TRIBONACCI SEQUENCES WITH CERTAIN INDICES
AND THEIR SUMS

EMRAH KILIC

ABSTRACT. In this paper, we derive new recurrence relations and
generating matrices for the sums of usual Tribonacci numbers and
4n subscripted Tribonacci sequences, {T4n}, and their sums. We
obtain explicit formulas and combinatorial representations for the
sums of terms of these sequences. Finally we represent relationships
between these sequences and permanents of certain matrices.

1. INTRODUCTION
The Tribonacci sequence is defined by for n > 1
Thg1 =Ty + T + 15—
where Ty = 0,77 = 1,75 = 1. The few first terms are
0,1,1,2,4,7,13,24,44,81,149, . ...

We define T,, = 0 for all n < 0. The Tribonacci sequence is a well known
generalization of the Fibonacci sequence. In (see page 527-536, [3]), one
can find some known properties of Tribonacci numbers. For example, the
generating matrix of {7T,,} is given by
1 1 1 Tov1 Th+Thoa T,
Qn = 1 00 Tn Tn—l + Tn—2 Tn—l
0 10 Tn—l Tn—2 + Tn—S Tn—2

For further properties of Tribonacci numbers, we refer to [1, 4, 5].
Let

n

Sp=> 10Tk (1.1)
In this paper, we obtain generating matrices for the sequences {7}, },{T4n },
{S,} and {S4n}. (The second result follows from a third order recurrence
for Ty,.) We also obtain Binet-type explicit and closed-form formulas for
S, and Sy,. Further on, we present relationships between permanents of
certain matrices and all the above-mentioned sequences.

2000 Mathematics Subject Classification. 11B37, 15A36, 11P.
Key words and phrases. Tribonacci number, generating function, generating matrix,
sums, determinant.



2 EMRAH KILIQ

2. ON THE TRIBONACCI SEQUENCE {7}

In this section, we give two new generating matrices for Tribonacci num-
bers and their sums. Then we derive an explicit formula for the sums.
Considering the matrix @, define the 4 x 4 matrices A and B,, as shown:

1 0 0 O 1 0 0 0

|11 11 . Sn Thy1 Th+Th—a Tn
A= 01 .00 and Bn N Snfl Tn Tnfl + Tn72 Tnfl
0 0 10 Sn72 Tnfl Tn72 + Tn73 Tn72

where S, is given by (1.1).
Lemma 1. Ifn >3, then S, =1+ S,_1 +Sp_2 + Sn_3

Proof. Induction on n. O

Theorem 1. Ifn > 3, then A" = B,,.

Proof. Using Lemma 1 and direct computation, we have B, = AB,_1,
from which it follows that B, = A" 3Bs. By direct computation, By = A3
from which the conclusion follows. O

By the definition of matrix B,,, we write B,,+m = BnBn = BB, for
all n,m > 3. From a matrix multiplication, we have the following Corollary
without proof.

Corollary 1. Forn >0 and m > 3,

Sn+m - Sn + Tn+1sm + (Tn + Tnfl) Sm71 + TnSm,z.

The roots of characteristic equation of Tribonacci numbers, 23 — z2 —

r—1=0, are

Q
|

(1+€/19+3\/§+ 5'/19—3\/5) /3,

B = (1+w€/19+3\/§+w2\3/19—3\/§>/3,

v = (1+w2\3/19+3\/33+w§/19—3\/33)/3

where w = (1 + Z\/g) /2 is the primitive cube root of unity.
The Binet formula of Tribonacci sequence is given by

Tl gntt N

' = Gefa—y) T BB T e (=B

T,

Computing the eigenvalues of matrix A, we obtain «, 3,7,1.
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Define the diagonal matrix D and the matrix V as shown, respectively:

1 0 0 0 1 0 0 O
10 a 0 0 o -12 2 pE o2
D=1¢9 ¢ 3 o | V= ~1/2 a B
00 0 ~ ~1/2 1 1 1
One can check that AV = V D. Since the roots «, 3, are distinct, it follows

that det V' # 0.
Theorem 2. Ifn >0, then S, = (Th42 + T — 1) /2.

Proof. Since AV = VD and detV # 0, we write V"'AV = D. Thus the
matrix A is similar to the matrix D. Then A"V = VD™, By Theorem 1,
we write B,V = VD" Equating the (2, 1)th elements of the equation and
since Ty, 41 + 27, +T,—1 = T, 42 + T),, the theorem is proven. [l

Define the 4 x 4 matrices R and K as shown:

2 0 0 -1 Sp+1 —Sn—2 —Sn-1 —Sn
100 0 _ | Sa —Sams —Sn—2 —Spa
Ri 0 1 0 0 ’Kn Sn—l —Pn—4 —In—3 _Sn—2
0 0 1 0 Sn—2 —Pn-5 T Pn—4 _Sn—3

where S, is given by (1.1).
Theorem 3. Ifn > 4, then R" = K,,.

Proof. Considering 25,41 — Sp—2 = Sp41 + Sng1 — Sn—2 = Spg1 + Loy +
T,+T,—1 = Spy2, we write K,, = RK,,_1. By a simple inductive argument,
we write K,, = R"'K;. By the definitions of matrices R and K,,, one can
see that K1 = R and so we have the conclusion, K,, = R". O

Then the characteristic equations of matrix R and sequence {S,} is
xz* — 223 + 1 = 0. Computing the roots of the equation, we obtain «, 3,7,
1.

Corollary 2. The sequence {S,} satisfies the following recursion, forn > 3
Sn = 2Sn—1 - Sn—4
where SO = 0, Sl = 1, SQ = 27 Sg, =4.

Define the Vandermonde matrix V; and diagonal matrix D; as follows:

o? 52 ¥l a 0 0 0
a2 B2 10 B8 00
Vl— a B ~ 1 anle— 0 0 ~y 0
1 1 1 1 0 0 0 1
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. . . T
Let w; be a 4 x 1 matrix such that w; = [ o4 proitt gnmitd g ]

and Vj(i) be a 4 x 4 matrix obtained from V; by replacing the jth column
of VI by w;.

Theorem 4. Forn > 4, k;; = det (Vj(”) /det (Vi) where K, = [kyj].

Proof. One can see that RV} = V1 D;. Since «, 3,7,1 are different and V}
is a Vandermonde matrix, Vi is invertible. Thus we write Vl_lel =D,
and so R*"V; = V1 D7. By Theorem 3, K,V = V1 DT. Thus we have the
following equations system:

ki + Pkio + akis + ki = o

Bk + BPhiz + Blis + ki = B

Vkit + VP kio + vkiz + ki = 4"
kix + ko +kis+ kg = 1

where K,, = [k;;]. By Cramer solution of the above system, the proof is
seen. O

Corollary 3. Then for n > 0,

n42 n42 n42

Sn = @ Dia-Aa— T F-DE-aG— T G-DO—aG-A)"
Proof. Taking ¢ = 2, j =1 in Theorem 4, ko1 = S,,. Computing det V; and
det (vf”) ,we obtain det Vi = (a — 1) (8 — 1) (y — 1) (a — B) (& — ) (B — )
and det (V) = a™¥2 (8 — 7) (1=(8 +9)+67—5"2 (a = 9) (1—( + )+

ay) + "2 (o — B) (1 — (a+ B) + af), respectively. So the proof is com-
plete. O

From Corollary 3 and Theorem 2, we give the following result: For n > 0

= (a=1)(a=B)(a—) T BDE-F— T DO~ (—B)"

Tn+2+Tn_1 Oc"+2 n+2 n+2
2

3. ON THE TRIBONACCI SEQUENCE {7y, }

In this section, we consider the 4n subscripted Tribonacci numbers. First
we define a new third-order linear recurrence relation for the 4n subscripted
Tribonacci numbers. Then we give a new generating matrix for these terms,
T4n. We obtain new formulas for the sequence {7y} .

Lemma 2. Forn > 1,
Tytny1) = NWlan + 5T y(n—1) + Tan—2)
where Ty =0, Ty =4, Tg = 44.
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Proof. (Induction on n) . If n = 2, then 11T + 5Ty +Tp = 11 (44) +5(4) +
0 = 504 = Ti5. Suppose that the claim is true for n > 2. Then we show
that the claim is true for n + 1. By the definition of {T,}, we write
11T4(n+1) + 5Ty, + T4(n—1)
= 22Typ40 + 11T 41 + 26Ty, + 13Ty —1 + 11Ty o
= 44T 411 + 37Ty, + 24Ty,

= Tynys.
Thus the proof is complete. O
Define the 4 X 4 matrices F' and G,, defined by
1 0 0 0 1 0 0 0
r_ 1 11 5 1 G — 1 Sn Tangysa  Typ + Typn—g Tin
- 0 1 0 O ’ m T4 Sn—1 T4n 5714n—4 + T4n—8 T4n—4
0 0 10 Sn—2 Tun—a OSTun_g+Tin—12 Tan_s

where s, is given by
Sp = EZ:O Tup. (3.1)
Since s, = Ty, + s,_1 and considering Lemma 1, we have the following
Corollary without proof.

Corollary 4. If n > 0, then F" = G,,.

After some computations, the eigenvalues of matrix F are o, B, ~* and
1.
Define the matrices A and Dy as shown:

1 0 0 0 1 0 0 0
| —1/16 @® B 48 |10 a* 0 0
A= C116 ot gt o4t | P20 g gt g

~1/16 1 1 1 0 0 0 ~*

Theorem 5. Ifn > 0, then s, = (Typia + 6Tup + Typn_s — Ty) /TZ.

Proof. Since «, and « are different, and extending to the first row, we
obtain det A # 0. One can check that FFA = ADy so that F"A = ADZ.
By Corollary 4, G,A = ADY. Equating the (2.1) elements of this matrix
equation, the theorem is proven. O

In the above, we give the generating matrix for both the terms of {7y, }
and their sums. Now we give a new matrix to generate only the sums.
Define the 4 x 4 matrices L and P as shown:
12 -6 -4 -1
1 0 0 0
0 1 0 0
0 O 1 0

L =
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Sp41 - (GSn + 437171 + sn72) - (4sn + Snfl) —Sn
1 Sn - (637171 + 457172 + Sn73) - (487171 + 3n72) —Sn—1
T4 Sp—1  — (657172 + 457173 + 57174) - (48n72 + 3n73) —Sp—2

Sp—2 — (6Sn—3 + 4Sn—4 + 3n—5) - (48’n—3 + 8n—4) —Sn-3

where s, given by (3.1).
Theorem 6. Ifn >4, then L™ = P,.
Proof. The proof follows from the induction method. O

The characteristic equation of matrix L is 2 — 1223 + 622 + 4z +1 = 0.
Computing the roots of the equation, we obtain «, 3,7 and 1. Define the 4 x
4 Vandermonde matrix A; and diagonal matrix D3 as shown, respectively:

al2 g2 412 at 0 0 0

a8 B8 481 0o 8* 0 o0

A1 = Oz4 54 74 1 and D3 = 0 0 ’74 0
1 1 1 1 0 0 0 1

Since a, 3,7,1 are different and A; is a Vandermonde matrix, det A; # 0.
Theorem 7. Then forn > 4,

s$n =14 ((af‘*l)(a“*ﬁ“)(a“*v“) T (B*=1)(B*—ah) (BT =) + (vi-1)(at—*)(BT—%)
Proof. Tt can be shown that LA; = Ay D3. Since det A1 # 0, the matrix A,
is invertible. Thus we write AflLAl = D3 so that L"A; = A1 D%. From
Theorem 6, we know L™ = P,,. Thus P,A; = A1 D%. Clearly we have the
following linear equations system:

a4n+8 ﬁ4n+8 ,Y4n+8 )

a'?pi + Ppis + a'pis +piu = oIS

BYpi + Bz + Bpis +pia = BHTITIS

Y20 +VPpi2 + Y iz +puy = AHnTOHIE
piatpi2tpstpa = 1

where P, = [p;;]. Let u; be a 4 x 1 matrix as follows:
T .
w; = [ aAn=0+16  gdn—i)+16 a(n—i)+16 | } and Ay)j be a 4 x 4

matrix obtained from A; by replacing the jth column of AT by u;. By
Cramer solution of the above system and since pa; = s, /Ty,

p;j = det (Aglz) /det (A1) and so s, = Ty det (A(lzi) /det (Ay).
Also we obtain
det (Aﬂ) A8 (54 _ 1) (74 _ 1) (ﬂ4 _ 74) _ gin+s (a4 _ 1) %
(4~ 1) (" %) 4 474 (0 1) (8~ 1) (o - )
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and
det (A1) = (o = 1) (8" = 1) (v" = 1) (a* = 8%) (a* = 7*) (8* = ")
Thus the proof is easily seen. g

Corollary 5. Forn > 3, the sequence {s,} satisfies the following recursion
Sp =125,_1 — 68,2 — 48,3 — Sp_4
where sg = 0,81 = 4,59 = 48, s3 = 552, s4 = 6320.

Since the recurrence relations of sequence {1y, } and their sums, we can
give generating functions of them :
Let G (x) = Ty + Tyx + Tyx? + Tiox® + ...+ Typx™ + ... Then

G(x) =202 Tant" = {5 tar =05

Let W (z) = s12 + sox? + s323 + ... + 8,2™ + ..., where s, is as before.
Then

_ S n o __ 4x
W(z) =X nto 02" = Tmimreer i
4. DETERMINANTAL REPRESENTATIONS

In this section, we give relationships between the sequence {Ty,}, its
sums and the permanents of certain matrices. In [6], Minc derived an in-
teresting relation including the permanent of (0, 1)-matrix F (n, k) of order
n and the generalized order-k Fibonacci numbers. According to the Minc’s
result, for k = 3, the n x n matrix F' (n, 3) takes the following form

1 1 1 0
1 1 1
F(n,3) = 1 . 1
.11
0 11|

then perF (n,3) = T,4+1 where T, is the nth Tribonacci number.

For n > 1, define the n x n matrix M,, = [m;;] with m4; =m;; =1 for
all i, mip1;, =mi i1 =1for 1 <i<n—-1, miyo=1for1 <i<n-2
and 0 otherwise.

Theorem 8. Ifn > 1, then perM, =Y., T;.

Proof. (Induction on n) If n = 2, then perMy = T} +T» = 2. Suppose that
the equation holds for n. Then we show that the equation holds for n+1. By
the definitions of matrices F (3,n) and M, expanding the perM, 1 with
respect to the first column gives us perM,,+; =perF (3,n) +perM,, .By our
assumption and the result of Minc, perM,, 41 = Thy1+ Y o T = 22:01 T;.
Thus the proof is complete. O
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Define the n x n matrix U,, = [u;;] with u;; =2for 1 <i<mn, w41, =1
for1<i<n-—1, y;;,43 =—1for 1 <i<n—3and 0 otherwise.
Theorem 9. Then forn > 4,
perU, = Sp41
where Sy, is as before and perUy = 2, perUs = 4, perUs = 8, perUy = 15

Proof. Expanding the perlU,, according to the last column four times, we
obtain

perU, = 2perU,_1 — perU,_4. (4.1)
Since perU; = Sy = Z?:()Ti, pertUs = S3 = Z?:o T;, pertUs = Sy =
Z?:OTIU pertUy = S5 = Z?:o T;, then, by Corollary 2, the recurrence
relation in (4.1) generate the sums of Tribonacci numbers. Thus we have
the conclusion. O

Now we derive a similar relation for terms of sequence {T4,}. Define
the n x n matrix H, = [hy;] with h;; = 11 for 1 < i < n, h;;41 = 5 for
1<i<n—-1, hjjjeo=1for 1 <i<n—-2, hjyy;,for1<i<n—1and0
otherwise.

Theorem 10. Then for n > 1
perH, = T4(n+1)/T4
where perHy = Tg/Ty.

Proof. Expanding the perT;,jaccording to the last column, by our assump-
tion and the definition of H,,, we obtain

perH, 1 = 1lperH, + bperH,_1 + perH, _,. (4.2)

Since perHy = Tg /Ty, perHy = T12/Ty and perHs = T16/Ty, by Lemma 2,
the recurrence relation in (4.2) generates the Ty(,11)/Ts. The theorem is
proven. ]

For n > 1, we define the n x n matrix Z,, as in the compact form, by the
definition of H,,,

O =
&
L

0
Theorem 11. Ifn > 1, then perZ, = (>, Tu;) /Ta.
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Proof. (Induction on n) If n = 2, then perZs = (25:1 TM) /Ty = 12.
Suppose that the equation holds for n. We show that the equation holds for
n—+ 1. Thus, by the definitions of H,, and Z,,, expanding perZ, 1 according
to the first column gives us perZ, 1 =perZ,+perH,,. By our assumption
and Theorem 10, we have the conclusion.

Finally, define the 4 x 4 matrix V,, = [v;;] with v;; = 12 for 1 < ¢
n, Vii+1 = —6 for 1 S ) S n — 1, Vii+2 = —4 for 1 S ) S n — 2, Vi, i+3
—1for1<i<n—3, viy1,=1for 1 <¢<n—1and 0 otherwise.

Theorem 12. Then forn > 1,
perY, = s, /Ty.

in 0O

where perYy = so /Ty, perYs = s3/Ty,perYs = s4/Ty, perYy = s4/Ty.
Proof. Expanding the perY,, according to the last column gives
perY,, = 12perY,,_| — 6perY,,_o — 4perY,,_3 — perY,,_4. (4.3)

Since perY; = s9/Ty = 12, perYs = s3/Ty = 138, perYs = s4/Ty =
1580, perYy = s4/Ty = 18083 and by Corollary 5, the recurrence relation in
(4.3) generate the terms of sequence {s,}. Thus the proof is complete. [

5. COMBINATORIAL REPRESENTATIONS

In this section, we consider the result of Chen about the nth power of a
companion matrix, we give some combinatorial representations.
Let Ai be a k x k companion matrix as follows:

C1 Co Ck
1 0 0
Ay (c1,c2,. .0 508) = : ) ) :
0O 0 1 0

Then one can find the following result in [2]:

Theorem 13. The (i,7) entry az(-;b) (c1,c2,...,c) in the matriz Al (c1,c2,. . .,Cr)
is given by the following formula:

(n)

aij (Cla Coy vy Ck) = Z Lttt At (tl+t2+m+tk)cil Lk (51)

t1+ta+.. .+t t1,t2,.. otk o O
(t1,t2,...tx)

where the summation is over nonnegative integers satisfying t1 +2ta+ ...+
kt, =n — 1+ j, and the coefficients in (5.1) is defined to be 1 if n =i — j.

Corollary 6. Let S,, be the sums of Tribonacci numbers. Then
S’n _ Z (7"1+7"2+T3+T4)27'1 (_1)7’4

T1,72,73,T4
(ri,r2,m3,74)

where the summation is over nonnegative integers satisfying r1+2ro 4313+
4ry =n — 1.
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Proof. In Theorem 13, if j = 1,7 = 2,c;1 =2,¢c2 = ¢c3 =0 and ¢4 = —1, the
proof follows from Theorem 3 by considering the matrices R and K,,. O

Corollary 7. Let T,, be the nth Tribonacci number. Then
Ty, = Z (t1+t2+t3) 111582

t1,ta,t
(trstats)

where the summation is over nonnegative integers satisfying tq +2to + 3tz =

n— 1.

Proof. When j =1,i =2, =11,co0 =4,c3 =1 in Theorem 13, the proof
follows from Corollary 4 by ignoring the first columns and rows of matrices
F and G,,. O

Corollary 8. Let s, be as before. Then

Sy = Z (T1+r2+r3+7'4) 1971672473 (71)7‘2-‘1-7‘3-‘1—7’4

T1,72,73,T4
(r1,72,73,74)

where the summation is over nonnegative integers satisfying r1+2ro+3rs+
47“4 =n-—1.

Proof. When j = 1,1 =2,¢c; = 12,¢5 = —6,¢c3 = —4,¢4 = —1 in Theorem
13, the proof follows from Theorem 6 by considering the matrices L and
P,. O
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