
TRIBONACCI SEQUENCES WITH CERTAIN INDICES
AND THEIR SUMS
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Abstract. In this paper, we derive new recurrence relations and
generating matrices for the sums of usual Tribonacci numbers and
4n subscripted Tribonacci sequences, fT4ng ; and their sums. We
obtain explicit formulas and combinatorial representations for the
sums of terms of these sequences. Finally we represent relationships
between these sequences and permanents of certain matrices.

1. Introduction

The Tribonacci sequence is de�ned by for n > 1

Tn+1 = Tn + Tn�1 + Tn�2

where T0 = 0; T1 = 1; T2 = 1: The few �rst terms are

0; 1; 1; 2; 4; 7; 13; 24; 44; 81; 149; : : : :

We de�ne Tn = 0 for all n � 0: The Tribonacci sequence is a well known
generalization of the Fibonacci sequence. In (see page 527-536, [3]), one
can �nd some known properties of Tribonacci numbers. For example, the
generating matrix of fTng is given by

Qn =

24 1 1 1
1 0 0
0 1 0

35n =
24 Tn+1 Tn + Tn�1 Tn

Tn Tn�1 + Tn�2 Tn�1
Tn�1 Tn�2 + Tn�3 Tn�2

35 :
For further properties of Tribonacci numbers, we refer to [1, 4, 5].
Let

Sn =
Pn

k=0 Tk: (1.1)

In this paper, we obtain generating matrices for the sequences fTng,fT4ng,
fSng and fS4ng : (The second result follows from a third order recurrence
for T4n:) We also obtain Binet-type explicit and closed-form formulas for
Sn and S4n: Further on, we present relationships between permanents of
certain matrices and all the above-mentioned sequences.

2000 Mathematics Subject Classi�cation. 11B37, 15A36, 11P.
Key words and phrases. Tribonacci number, generating function, generating matrix,

sums, determinant.

1



2 EMRAH KILIÇ

2. On the Tribonacci sequence fTng

In this section, we give two new generating matrices for Tribonacci num-
bers and their sums. Then we derive an explicit formula for the sums.
Considering the matrix Q, de�ne the 4� 4 matrices A and Bn as shown:

A =

2664
1 0 0 0
1 1 1 1
0 1 0 0
0 0 1 0

3775 and Bn =

2664
1 0 0 0
Sn Tn+1 Tn + Tn�1 Tn
Sn�1 Tn Tn�1 + Tn�2 Tn�1
Sn�2 Tn�1 Tn�2 + Tn�3 Tn�2

3775
where Sn is given by (1.1).

Lemma 1. If n � 3; then Sn = 1 + Sn�1 + Sn�2 + Sn�3

Proof. Induction on n: �

Theorem 1. If n � 3; then An = Bn:

Proof. Using Lemma 1 and direct computation, we have Bn = ABn�1;
from which it follows that Bn = An�3B3: By direct computation, B3 = A3

from which the conclusion follows. �

By the de�nition of matrix Bn; we write Bn+m = BnBm = BmBn for
all n;m � 3: From a matrix multiplication, we have the following Corollary
without proof.

Corollary 1. For n > 0 and m � 3;

Sn+m = Sn + Tn+1Sm + (Tn + Tn�1)Sm�1 + TnSm�2:

The roots of characteristic equation of Tribonacci numbers, x3 � x2 �
x� 1 = 0; are

� =

�
1 +

3

q
19 + 3

p
33 +

3

q
19� 3

p
33

�
=3;

� =

�
1 + !

3

q
19 + 3

p
33 + !2

3

q
19� 3

p
33

�
=3;


 =

�
1 + !2

3

q
19 + 3

p
33 + !

3

q
19� 3

p
33

�
=3

where ! =
�
1 + i

p
3
�
=2 is the primitive cube root of unity.

The Binet formula of Tribonacci sequence is given by

Tn =
�n+1

(���)(��
) +
�n+1

(���)(��
) +

n+1

(
��)(
��) :

Computing the eigenvalues of matrix A; we obtain �; �; 
,1:
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De�ne the diagonal matrix D and the matrix V as shown, respectively:

D =

2664
1 0 0 0
0 � 0 0
0 0 � 0
0 0 0 


3775 and V =

2664
1 0 0 0

�1=2 �2 �2 
2

�1=2 � � 

�1=2 1 1 1

3775 :
One can check that AV = V D: Since the roots �; �; 
 are distinct, it follows
that detV 6= 0:

Theorem 2. If n > 0; then Sn = (Tn+2 + Tn � 1) =2:

Proof. Since AV = V D and detV 6= 0; we write V �1AV = D. Thus the
matrix A is similar to the matrix D: Then AnV = V Dn: By Theorem 1,
we write BnV = V Dn: Equating the (2; 1)th elements of the equation and
since Tn+1 + 2Tn + Tn�1 = Tn+2 + Tn, the theorem is proven. �

De�ne the 4� 4 matrices R and K as shown:

R =

2664
2 0 0 �1
1 0 0 0
0 1 0 0
0 0 1 0

3775 , Kn =

2664
Sn+1 �Sn�2 �Sn�1 �Sn
Sn �Sn�3 �Sn�2 �Sn�1
Sn�1 �Sn�4 �Sn�3 �Sn�2
Sn�2 �Sn�5 �Sn�4 �Sn�3

3775
where Sn is given by (1.1).

Theorem 3. If n > 4; then Rn = Kn:

Proof. Considering 2Sn+1 � Sn�2 = Sn+1 + Sn+1 � Sn�2 = Sn+1 + Tn+1 +
Tn+Tn�1 = Sn+2; we write Kn = RKn�1: By a simple inductive argument,
we write Kn = R

n�1K1: By the de�nitions of matrices R and Kn; one can
see that K1 = R and so we have the conclusion, Kn = R

n: �

Then the characteristic equations of matrix R and sequence fSng is
x4 � 2x3 + 1 = 0: Computing the roots of the equation, we obtain �; �; 
,
1:

Corollary 2. The sequence fSng satis�es the following recursion, for n > 3

Sn = 2Sn�1 � Sn�4
where S0 = 0, S1 = 1; S2 = 2; S3 = 4:

De�ne the Vandermonde matrix V1 and diagonal matrix D1 as follows:

V1 =

2664
�3 �3 
3 1

�2 �2 
2 1
� � 
 1
1 1 1 1

3775 and D1 =

2664
� 0 0 0
0 � 0 0
0 0 
 0
0 0 0 1

3775 :
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Let wi be a 4�1 matrix such that wi =
�
�n�i+4 �n�i+4 
n�i+4 1

�T
and V (i)j be a 4 � 4 matrix obtained from V1 by replacing the jth column
of V T1 by wi:

Theorem 4. For n > 4; kij = det
�
V
(i)
j

�
=det (V1) where Kn = [kij ] :

Proof. One can see that RV1 = V1D1: Since �; �; 
,1 are di¤erent and V1
is a Vandermonde matrix, V1 is invertible. Thus we write V

�1
1 RV1 = D1

and so RnV1 = V1D
n
1 : By Theorem 3, KnV1 = V1D

n
1 : Thus we have the

following equations system:

�3ki1 + �
2ki2 + �ki3 + ki4 = �n�i+4

�3ki1 + �
2ki2 + �ki3 + ki4 = �n�i+4


3ki1 + 

2ki2 + 
ki3 + ki4 = 
n�i+4

ki1 + ki2 + ki3 + ki4 = 1

where Kn = [kij ] : By Cramer solution of the above system, the proof is
seen. �

Corollary 3. Then for n > 0;

Sn =
�n+2

(��1)(���)(��
) +
�n+2

(��1)(���)(��
) +

n+2

(
�1)(
��)(
��) :

Proof. Taking i = 2; j = 1 in Theorem 4; k21 = Sn: Computing detV1 and

det
�
V
(2)
1

�
; we obtain detV1 = (�� 1) (� � 1) (
 � 1) (�� �) (�� 
) (� � 
)

and det
�
V
(2)
1

�
= �n+2 (� � 
) (1�(� + 
))+�
��n+2 (�� 
) (1�(�+ 
)+

�
) + 
n+2 (�� �) (1� (�+ �) + ��) ; respectively. So the proof is com-
plete. �

From Corollary 3 and Theorem 2, we give the following result: For n > 0

Tn+2+Tn�1
2 = �n+2

(��1)(���)(��
) +
�n+2

(��1)(���)(��
) +

n+2

(
�1)(
��)(
��) :

3. On the Tribonacci sequence fT4ng

In this section, we consider the 4n subscripted Tribonacci numbers. First
we de�ne a new third-order linear recurrence relation for the 4n subscripted
Tribonacci numbers. Then we give a new generating matrix for these terms,
T4n: We obtain new formulas for the sequence fT4ng :

Lemma 2. For n > 1;

T4(n+1) = 11T4n + 5T4(n�1) + T4(n�2)

where T0 = 0; T4 = 4, T8 = 44:
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Proof. (Induction on n) . If n = 2; then 11T8+5T4+T0 = 11 (44)+5 (4)+
0 = 504 = T12: Suppose that the claim is true for n > 2: Then we show
that the claim is true for n+ 1: By the de�nition of fTng ; we write

11T4(n+1) + 5T4n + T4(n�1)

= 22T4n+2 + 11T4n+1 + 26T4n + 13T4n�1 + 11T4n�2

= 44T4n+1 + 37T4n + 24T4n�1

= T4n+8:

Thus the proof is complete. �
De�ne the 4� 4 matrices F and Gn de�ned by

F =

2664
1 0 0 0
1 11 5 1
0 1 0 0
0 0 1 0

3775 , Gn = 1

T4

2664
1 0 0 0
sn T4n+4 5T4n + T4n�4 T4n
sn�1 T4n 5T4n�4 + T4n�8 T4n�4
sn�2 T4n�4 5T4n�8 + T4n�12 T4n�8

3775
where sn is given by

sn =
Pn

k=0 T4k: (3.1)

Since sn = T4n + sn�1 and considering Lemma 1, we have the following
Corollary without proof.

Corollary 4. If n > 0; then Fn = Gn:

After some computations, the eigenvalues of matrix F are �4; �4; 
4 and
1:
De�ne the matrices � and D2 as shown:

� =

2664
1 0 0 0

�1=16 �8 �8 
8

�1=16 �4 �4 
4

�1=16 1 1 1

3775 and D2 =

2664
1 0 0 0
0 �4 0 0

0 0 �4 0
0 0 0 
4

3775 :
Theorem 5. If n > 0; then sn = (T4n+4 + 6T4n + T4n�4 � T4) =T 24 :

Proof. Since �; � and 
 are di¤erent, and extending to the �rst row, we
obtain det� 6= 0: One can check that F� = �D2 so that Fn� = �Dn

2 :
By Corollary 4, Gn� = �Dn

2 : Equating the (2:1) elements of this matrix
equation, the theorem is proven. �
In the above, we give the generating matrix for both the terms of fT4ng

and their sums. Now we give a new matrix to generate only the sums.
De�ne the 4� 4 matrices L and P as shown:

L =

2664
12 �6 �4 �1
1 0 0 0
0 1 0 0
0 0 1 0

3775
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and

Pn =
1

T4

2664
sn+1 � (6sn + 4sn�1 + sn�2) � (4sn + sn�1) �sn
sn � (6sn�1 + 4sn�2 + sn�3) � (4sn�1 + sn�2) �sn�1
sn�1 � (6sn�2 + 4sn�3 + sn�4) � (4sn�2 + sn�3) �sn�2
sn�2 � (6sn�3 + 4sn�4 + sn�5) � (4sn�3 + sn�4) �sn�3

3775
where sn given by (3.1).

Theorem 6. If n > 4; then Ln = Pn:

Proof. The proof follows from the induction method. �
The characteristic equation of matrix L is x4� 12x3+6x2+4x+1 = 0:

Computing the roots of the equation, we obtain �; �; 
 and 1: De�ne the 4�
4 Vandermonde matrix �1 and diagonal matrix D3 as shown, respectively:

�1 =

2664
�12 �12 
12 1

�8 �8 
8 1

�4 �4 
4 1
1 1 1 1

3775 and D3 =

2664
�4 0 0 0

0 �4 0 0
0 0 
4 0
0 0 0 1

3775 :
Since �; �; 
,1 are di¤erent and �1 is a Vandermonde matrix, det�1 6= 0:

Theorem 7. Then for n > 4;

sn = T4

�
�4n+8

(�4�1)(�4��4)(�4�
4) +
�4n+8

(�4�1)(�4��4)(�4�
4) +

4n+8

(
4�1)(�4�
4)(�4�
4)

�
:

Proof. It can be shown that L�1 = �1D3: Since det�1 6= 0; the matrix �1
is invertible. Thus we write ��11 L�1 = D3 so that Ln�1 = �1D

n
3 : From

Theorem 6, we know Ln = Pn: Thus Pn�1 = �1D
n
3 : Clearly we have the

following linear equations system:

�12pi1 + �
8pi2 + �

4pi3 + pi4 = �4(n�i)+16

�12pi1 + �
8pi2 + �

4pi3 + pi4 = �4(n�i)+16


12pi1 + 

8pi2 + 


4pi3 + pi4 = 
4(n�i)+16

pi1 + pi2 + pi3 + pi4 = 1

where Pn = [pij ] : Let ui be a 4� 1 matrix as follows:

ui =
h
�4(n�i)+16 �4(n�i)+16 
4(n�i)+16 1

iT
and �(i)1;j be a 4 � 4

matrix obtained from �1 by replacing the jth column of �T1 by ui: By
Cramer solution of the above system and since p21 = sn=T4;

pij = det
�
�
(i)
1;j

�
=det (�1) and so sn = T4 det

�
�
(2)
1;1

�
=det (�1) :

Also we obtain

det
�
�
(2)
1;1

�
= �4n+8

�
�4 � 1

� �

4 � 1

� �
�4 � 
4

�
� �4n+8

�
�4 � 1

�
��


4 � 1
� �
�4 � 
4

�
+ 
4n+8

�
�4 � 1

� �
�4 � 1

� �
�4 � �4

�
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and

det (�1) =
�
�4 � 1

� �
�4 � 1

� �

4 � 1

� �
�4 � �4

� �
�4 � 
4

� �
�4 � 
4

�
:

Thus the proof is easily seen. �
Corollary 5. For n > 3; the sequence fsng satis�es the following recursion

sn = 12sn�1 � 6sn�2 � 4sn�3 � sn�4
where s0 = 0; s1 = 4; s2 = 48; s3 = 552; s4 = 6320:

Since the recurrence relations of sequence fT4ng and their sums, we can
give generating functions of them :
Let G (x) = T0 + T4x+ T8x2 + T12x3 + : : :+ T4nxn + : : : : Then

G (x) =
P1

n=0 T4nx
n = 4x

1�11x�5x2�x3 :

Let W (x) = s1x + s2x
2 + s3x

3 + : : : + snx
n + : : : ; where sn is as before.

Then
W (x) =

P1
n=0 snx

n = 4x
1�12x+6x2+4x3+x4 :

4. Determinantal Representations

In this section, we give relationships between the sequence fT4ng, its
sums and the permanents of certain matrices. In [6], Minc derived an in-
teresting relation including the permanent of (0; 1)-matrix F (n; k) of order
n and the generalized order-k Fibonacci numbers. According to the Minc�s
result, for k = 3; the n� n matrix F (n; 3) takes the following form

F (n; 3) =

266666664

1 1 1 0

1 1 1
. . .

1
. . .

. . . 1
. . . 1 1

0 1 1

377777775
;

then perF (n; 3) = Tn+1 where Tn is the nth Tribonacci number.
For n > 1; de�ne the n� n matrix Mn = [mij ] with m4j = mii = 1 for

all i; mi+1;i = mi;i+1 = 1 for 1 � i � n � 1; mi;i+2 = 1 for 1 � i � n � 2
and 0 otherwise.

Theorem 8. If n > 1; then perMn =
Pn

i=0 Ti:

Proof. (Induction on n) If n = 2; then perM2 = T1 + T2 = 2: Suppose that
the equation holds for n: Then we show that the equation holds for n+1: By
the de�nitions of matrices F (3; n) and Mn; expanding the perMn+1 with
respect to the �rst column gives us perMn+1 =perF (3; n)+perMn:By our
assumption and the result of Minc, perMn+1 = Tn+1+

Pn
i=0 Ti =

Pn+1
i=0 Ti:

Thus the proof is complete. �
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De�ne the n�n matrix Un = [uij ] with uii = 2 for 1 � i � n; ui+1;i = 1
for 1 � i � n� 1; ui;i+3 = �1 for 1 � i � n� 3 and 0 otherwise.

Theorem 9. Then for n > 4;

perUn = Sn+1

where Sn is as before and perU1 = 2; perU2 = 4; perU3 = 8; perU4 = 15

Proof. Expanding the perUn according to the last column four times, we
obtain

perUn = 2perUn�1 � perUn�4: (4.1)

Since perU1 = S2 =
P2

i=0 Ti; perU2 = S3 =
P3

i=0 Ti; perU3 = S4 =P4
i=0 Ti; perU4 = S5 =

P5
i=0 Ti; then, by Corollary 2, the recurrence

relation in (4.1) generate the sums of Tribonacci numbers. Thus we have
the conclusion. �

Now we derive a similar relation for terms of sequence fT4ng : De�ne
the n � n matrix Hn = [hij ] with hii = 11 for 1 � i � n; hi;i+1 = 5 for
1 � i � n� 1; hi;i+2 = 1 for 1 � i � n� 2; hi+1;i for 1 � i � n� 1 and 0
otherwise.

Theorem 10. Then for n > 1

perHn = T4(n+1)=T4

where perH1 = T8=T4.

Proof. Expanding the perTn+1according to the last column, by our assump-
tion and the de�nition of Hn; we obtain

perHn+1 = 11perHn + 5perHn�1 + perHn�2: (4.2)

Since perH1 = T8=T4, perH2 = T12=T4 and perH3 = T16=T4, by Lemma 2,
the recurrence relation in (4.2) generates the T4(n+1)=T4. The theorem is
proven. �

For n > 1; we de�ne the n�n matrix Zn as in the compact form, by the
de�nition of Hn;

Zn =

2666664
1 1 : : : 1
1
0 Hn�1
...
0

3777775 :

Theorem 11. If n > 1; then perZn = (
Pn

i=1 T4i) =T4:
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Proof. (Induction on n) If n = 2; then perZ2 =
�P2

i=1 T4i

�
=T4 = 12:

Suppose that the equation holds for n:We show that the equation holds for
n+1: Thus, by the de�nitions of Hn and Zn; expanding perZn+1 according
to the �rst column gives us perZn+1 =perZn+perHn: By our assumption
and Theorem 10, we have the conclusion. �
Finally, de�ne the 4 � 4 matrix Vn = [vij ] with vii = 12 for 1 � i �

n; vi;i+1 = �6 for 1 � i � n � 1; vi;i+2 = �4 for 1 � i � n � 2; vi;i+3 =
�1 for 1 � i � n� 3; vi+1;i = 1 for 1 � i � n� 1 and 0 otherwise.
Theorem 12. Then for n > 1;

perYn = sn=T4:

where perY1 = s2=T4; perY2 = s3=T4;perY3 = s4=T4; perY4 = s4=T4:

Proof. Expanding the perYn according to the last column gives

perYn = 12perYn�1 � 6perYn�2 � 4perYn�3 � perYn�4: (4.3)

Since perY1 = s2=T4 = 12; perY2 = s3=T4 = 138; perY3 = s4=T4 =
1580; perY4 = s4=T4 = 18083 and by Corollary 5, the recurrence relation in
(4.3) generate the terms of sequence fsng : Thus the proof is complete. �

5. Combinatorial Representations

In this section, we consider the result of Chen about the nth power of a
companion matrix, we give some combinatorial representations.
Let Ak be a k � k companion matrix as follows:

Ak (c1; c2; : : : ; ck) =

26664
c1 c2 : : : ck
1 0 : : : 0
...

. . .
. . .

...
0 0 1 0

37775 :
Then one can �nd the following result in [2]:

Theorem 13. The (i; j) entry a(n)ij (c1; c2; : : : ; ck) in the matrix A
n
k (c1,c2,: : :,ck)

is given by the following formula:

a
(n)
ij (c1; c2; : : : ; ck) =

P
(t1;t2;:::tk)

tj+tj+1+:::+tk
t1+t2+:::+tk

�
�
t1+t2+:::+tk
t1;t2;:::;tk

�
ct11 : : : c

tk
k (5.1)

where the summation is over nonnegative integers satisfying t1+2t2+ : : :+
ktk = n� i+ j; and the coe¢ cients in (5.1) is de�ned to be 1 if n = i� j:
Corollary 6. Let Sn be the sums of Tribonacci numbers. Then

Sn =
P

(r1;r2;r3;r4)

�
r1+r2+r3+r4
r1;r2;r3;r4

�
2r1 (�1)r4

where the summation is over nonnegative integers satisfying r1+2r2+3r3+
4r4 = n� 1:
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Proof. In Theorem 13, if j = 1; i = 2,c1 = 2; c2 = c3 = 0 and c4 = �1; the
proof follows from Theorem 3 by considering the matrices R and Kn. �
Corollary 7. Let Tn be the nth Tribonacci number. Then

T4n =
P

(t1;t2;t3)

�
t1+t2+t3
t1;t2;t3

�
11t15t2

where the summation is over nonnegative integers satisfying t1+2t2+3t3 =
n� 1:

Proof. When j = 1; i = 2,c1 = 11; c2 = 4; c3 = 1 in Theorem 13, the proof
follows from Corollary 4 by ignoring the �rst columns and rows of matrices
F and Gn. �
Corollary 8. Let sn be as before. Then

sn =
P

(r1;r2;r3;r4)

�
r1+r2+r3+r4
r1;r2;r3;r4

�
12r16r24r3 (�1)r2+r3+r4

where the summation is over nonnegative integers satisfying r1+2r2+3r3+
4r4 = n� 1:

Proof. When j = 1; i = 2,c1 = 12; c2 = �6; c3 = �4; c4 = �1 in Theorem
13, the proof follows from Theorem 6 by considering the matrices L and
Pn: �
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