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1. Introduction

A Toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant.
For r < n, a (n x n) r-Toeplitz matrix is determined by given 2r — 1 numbers o; € C, i=-r+1,...,-1,0,1,...,r — 1. Those
numbers are then placed as matrix elements constant along the (upper-left to lower-right) diagonals of the matrix:

Oo o1 . o (r-1) 0

041 o o1

o1 Olo g R ST )
A= (g =
Or-1 T, T, . o1
041 Olo o1
L 0 Or_q .. o oo

The matrix A is reduced to a tridiagonal Toeplitz matrix by taking r = 2. These types of matrices arise not only in different
theoretical fields (in linear algebra or numerical analysis), but also in applicative fields. For example, these matrices appear in
time series analysis, in signal processing and in solving differential equations (see [3,4,19]). For properties of these matrices,
we refer to [1,2,5-13,15-18,21]. In [22], the authors considered a constant-diagonals matrix and they gave many examples
on determinant and the inverse of the matrix for some special cases.

In this paper, we consider the same matrix and compute determinant of the matrix by its LU factorization. We determine
the eigenvalues of the matrix. Finally, some trigonometric representations for a recurrence relation are derived as applica-
tions of our results.
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2. A constant-diagonals matrix H,(a, b, c)

We will compute determinant of the matrix. For this purpose, firstly we use elementary operations.

Definition 1. For n > 2, let Hy(a,b,c) = [hy],,, denote the constant-diagonals matrix with h; =a for 1 <i<

b, hi,pj=cfor1<i<n-2and O otherwise.

Clearly, the matrix H,(a, b, c) takes the form:
f[a O b O 07
0 a 0 b
Hn (a7 b7 C) = 0 ¢ O O
0 c 0 a b
L0 0 ¢ 0 af

Let A and B be nonzero integers. Define the second order linear recurrence {u,} by for all n > 2:
u, = Au,_1 — Bu,_,
where up =0, u; = 1.
Let {u,} be as in (1) by taking A = a and B = bc.
Theorem 2. For n =2k, k > 1,
detHy(a,b,c) = uZ,,,
and forn=2k+1, k > 1,

det Hn (a7 b7 C) = Up1Upq2.

Proof. If we multiply the first row by ¢ o and subtract this from the third row, then using the notation a —

185

n, hijo =

bc

— U
T we

Z—;‘, we obtain:

obtain:
a 0 b 0
0 a 0 b
00 E—; 0
detH,(a,b,c) = .
c 0 a b
.0
0 c 0 a
If we multiply the second row by ¢ = 5 and subtract this from the fourth row, then using the notation ﬁ—j = a, we obtain:
2.0 b 0
1
0 2 0 b
1
0 0 Z—; 0 b
detHy(a,b,c) = 00 2 O
c 0 a b
o 0
0 c 0 a
If we multiply the third row by “L'f—; and subtract this from the fifth row, then using the identity a — "f,—i’c =
2 0 b 0
1
0 2 0 b
1
00 3—; 0 b
0 0 ﬁ—z 0 b
detH,(a,b,c) =
( ) 0 0 0
3
c 0 a .
0 c 0 a
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For n = 2k, k > 1, continuing this process, subtracting the (n — 3)th row from the (n — 1)th row and the (n — 2)th row from

the nth row multiplied by C”uk—k' for n > 6 and using by the identity a — % = Zi—j we get:
f,—f 0 b 0
5{ 0 b
% 0
detHy(a,b,c) = u . p
uy .
0 b
i 0
0 ey

Thus,

U U Us U U Ug U U
detH,(a,b,c) = detHy(a,b,c) = 2 22 2. & Tk Tl Tl _qp
Uy Uy Up Uy Up—1 Up—1 U Uk

In the rest of the proof, we consider the case n =2k + 1, k > 1. In addition to the above processes, if we multiply the
(n — 2)th row by % and subtract this from the nth row, then

L 0 b o [# 0 b 0
1
0 %2 0 b 02 0 b
uy 1
00 % 0 " 00 2 0
detH2k+1(a,b,C): oo - - b = o o0 . - b
Uy, Uy
i Qb i b
0 0 %10 0 0 % 0
'k
Ugy
0 c 0 a 0 0 o ui;
Therefore, we have:
Uk _ 2 Uk2
detHy 1(a,b,c) = detHy(a,b,c) = uji,; —= = U1 Upa.
U1 Uget1

Thus, the proof is complete. [

As an example, when a =1, b = ¢ =i in Theorem 2, where i# = —1, then

10 i 0

01 0

i0 1 i =Fr
S0

O l O ] 2nx2n

where F, is the nth Fibonacci number.

3. LU factorization of H,(a, b, c)

In this section, we give the Doolittle type LU factorization of H,(a, b, c).

We define a n x n unit lower triangular matrix Lo = [lj] with Ly,12k1 = bki22k = % for 1<k<|(n-1)/2], I =1 for
1<i<n and O otherwise. Define the nxn upper triangular matrix Uo = [qy] With Gy 126 1 = Garor = ”g—;’ for
1<k<|(n+1)/2], .o =b for 1<i<n-2 and 0 otherwise. Clearly, the matrices L, and U, take the forms for
n=2k k>1,



E. Kilic/ Applied Mathematics and Computation 204 (2008) 184-190
r1 -
_u_z O b -
1 U
u
an t b
u
)
Ly= a1 and Up = "
0= un . 0=
b
0 1 Wi g
Cly_q 0 1 U
Uk Yest.
CUy_q 0 1 L uy,
L uy i

where u, is the nth term of {u,} with A=a and B = bc.

Theorem 3. The LU factorization of Hy(a,b,c) has the form:
H,,(a, b, C) = LoUO,
where Ly and Uy be as before.

187

Proof. By the definitions of L, and Uy, we have I =0 forj > i, li,;=0for1<i<n-1andl;=0fori>j+3,and, q; =0
forj <i, q;;;,y =0for1<i<n-1, q; =0forj > i+ 3. First consider the case i = j. From matrix multiplication, we write:

n
hi = Zliqui = liqsi + lij—2G; 2

k=1
If we suppose that i = 2t, t > 0, then we write the above equation as follows:

Ueq + beue

hatae = b2t + b2 220 = u
t

which, by the recurrence relation of {u,}, satisfies

auy — beu;_1 + beuy_
hatae = =
Ut

Second, for i =2t +1,t > 1, we consider:

hati12601 = bia 264 Qoe12t1 T b1 201G 12001 = Qaes1 2001 + Bec12021G2e 12001

Urir Uri1

where hy; = a. Now consider the second case j = i + 2. From matrix multiplication and the definitions of Ly and Uy,

n
hij = Z lieQivz = liGiis2 = Giz2 = b.

k=1
Finally, we consider the case i = j + 2. Then, by l;,»; = c(g;) ', we have:
n
hia; = Z li2uGri = liv2iGs = C.
k=1

So the proof is complete. O

Ugyo +bcuy  augq — beu + beu; a

)

Thus, we can obtain the proof of Theorem 2 as a consequence of Theorem 3. Since Hy(a, b, c) = LoUy where Ly and U, given
by (2). Thus, detHy(a, b, c) = det(Lo) det(Uy) = det(Uy) since L, is the unit lower triangular matrix. Then for n = 2k, k > 1,

U, u U, U Ueq U
detH,(a,b,c) = detUy = —=2 —2...—k Kk Tkl Thil —2,,.
Uy Uy Ugq Ug1 Ug Uk

Ifn=2k+1, k> 1, then we get:

U, u U, Ug Ugq U U
detH,(a,b,c) = det Uy = 22702 Bk Pk ki Dkt Bhe2 Ugy1Uks2.
Uy Uy Ug-1 Ug-1 U Ux Uk

For example, let,

2 0 1 00
0 2 0 10
Hs(2,1,-1)=|-1 0 2 0 1
0 -1 0 20
0 0 -10 2
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According to the Theorem 3, the sequence {u,} takes the following form:
U, = 2un—1 + Un-2,

where 1y = 0, u; = 1. Then the first few terms of {u,} are u, =2, u3 =5, uy = 12. Then,

1 0 000 20100
0 1 0 00 02010
Lb=|-1 0 1 0 0| and Up=[0 0 5 0 1
0 -1 0 10 0003 0
0 0 -201 0000 2

o

5
Thus, detHs(2,1, —1) = 60.

4. Eigenvalues of H,(a,b,c)
In this section, we give an explicit form for the eigenvalues of H,(a, b, c). Recall that the sequence {u,} is defined by for
n>=2;
Up = Aun—l - Bun—27

where up = 0, u; = 1. Throughout this section, we consider the sequence {u,} by taking A =a and B = bc.
We construct an (n x n) tridiagonal Toeplitz matrix T, as follows:

a +bc
vbe a .
T, = ¢ . 3)
. Vbc
vbc a
If we expand the |T,| with respect to first row by the Laplace expansion, then we get:
det Tn - un+1- (4)

Let D, denote the characteristic polynomial of T,, that is,
D, = det(T, — Aly),

where I, is the unit matrix of order n.
From [7,20,14], we have that the zeros of D, are given by

ntk

Jx = a— 2vbc cos ,
n+1

k=1,2,...,n. (5)

To find the eigenvalues of H,(a, b, c), we consider two cases. First we begin with the case where k is even number.
Theorem 4. The matrix Ha,(a, b, c) has n double eigenvalues with the form:
nk

Je=a—-2vVbccos—-, k=1,2,....n.
n+1

Proof. Denote the characteristic polynomial of matrix H,,(a, b, c) by C,, that is, C;, = det(Hzq(a, b, c) — ila,). If we replace a
with a — /4 in Theorem 2, then by considering (4) and Theorem 2, we easily get:

Ce=Di,,.

From (5), we have the zeros of D,. So we derive the zeros of C,. Thus, the proof is complete. O
Second, we consider the eigenvalues of H,,,1(a, b, c) by the following theorem.

Theorem 5. The eigenvalues of H,,_1(a, b, c) are given by

{a—Z\/Ecos"—” fork=1,2,...n,

n+1

a-2vbccosk® fork=1,2,....n—1.

Proof. Denote the characteristic polynomial of matrix H, (a, b, c) by E,, that is, E,, = det(H,,_1(a,b,c) — Al,,_1). Replacing a
with a — 4 in Theorem 2, we get by considering (4) and Theorem 2:
Ey = Dy_1Dy.

From (5), we have the zeros of D,. Thus, the proof is easily seen. O
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For example, the eigenvalues of H5(2,1,-1) are
2-iV2, 2, V242, 2-i and 2+i,
where i = v—1.

5. Some special cases

Now we give some special results about determinant and permanent of the matrix Hy(a, b, c).

Definition 6. A matrix A is called convertible if there is an n x n (1, —1)-matrix C such that perA = det(A o C), where Ao C
denotes the Hadamard product of A and C. Such a matrix C is called a converter of A.

Let S be a (1, —1)-matrix of order n, defined by

11 -1 1 ... 1
11 1 -1

s_ |t
11 1 ... 1 -1
111 ... 1 1
11 1 .1 1

Let {u,} be as in (1) with A =a and B = bc.
Corollary 7. For n =2k, k > 1,

perHy(a,b, —c) = perHy,(a, —b,c) = uZ ,,
and forn=2k+1, k> 1,

perH,(a,b,—c) = perHy,(a, —b, c) = uy,1Ux 2.

Proof. Since the matrices S and S" are the converter of H,(a, b,c), the proof is readily seen. O
Thus, we give a relationship between the determinants of H,(a,b,c) and H,(—a,b, c).
Theorem 8. Let the matrix Hy(a, b, c) be as in Definition 1. Then for n > 1,
detH,(—a,b,c) = (—1)"detH,(a,b,c).

We obtain a result involving the negatively and positively subscripted Fibonacci numbers as follows:

1 0 i 0
o -1 o - F if n = 2k
detH,(-1.ii)=|i o -1 - i |=4 *V L
) ) F—(k+l)F—(k+2) 1fn:2k+1,
0
0 i 0 -1

where i = v—1.

We have that det Hoy(a, b,c) = u2,; and by the eigenvalues of H,(a, b, ¢), we can obtain:

Uniy = ﬁ [a — 2vbc cos(km/n + l)].

k=1

Similarly, considering det Hy,,1 = Uy, 1Un,2, We have:

n

F_neny = [JI=1 = 2icos(km/n + 1)].
k=1
The Chebysev polynomials of second kind {U,(x)} are defined in terms of trigonometric polynomials in cos 0 as
_sin(n+1)0 _
Un(x) = ~—smg’ X=cos 0. (6)
The family of Chebysev polynomials of second kind {U,(x)} satisfies the recurrence relation, for n > 1,

Uni1 (%) = 2xUp(x) — Up_1(X)
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with Uy (x) = 1, Uy (x) = 2x. The family can be obtained by successive determinants of:
2x 1
1 2x

Kn(x) =
1

1 2x

nxn

Thus, Uy, = (x/ﬁ)n detK, (ﬁ) Since det K,(x) = U,(x), we write u,,; = (\/E)”U,1 (ﬁ) and then we have the following
corollary.

Corollary 9. Forn > 1,

detHzu(a, b, c) = (bc)" <U” (2%/56) )2

and

det Han,1(a, b, c) = (\/E)Z"” U, (2%/%) Unia <

where U, (x) is the nth term of the {U,(x)}.

i)
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