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Abstract. In this paper, we consider the relationships between the second
order linear recurrences and the permanents and determinants of tridiagonal
matrices.

1. Introduction

The well-known Fibonacci, Lucas and Pell numbers can be generalized as follows:
Let A and B be nonzero, relatively prime integers such that D = A2 � 4B 6= 0:
De�ne sequences fung and fvng by, for all n � 2 (see [10]),

un = Aun�1 �Bun�2 (1.1)

vn = Avn�1 �Bvn�2 (1.2)

where u0 = 0; u1 = 1 and v0 = 2; v1 = A: If A = 1 and B = �1; then un = Fn
(the nth Fibonacci number) and vn = Ln (the nth Lucas number). If A = 2 and
B = �1; then un = Pn ( the nth Pell number).
An alternative is to let the roots of the equation t2 �At+B = 0 be, for n � 0

un =
�n � 
n
� � 
 and vn = �n + 
n: (1.3)

Also it is well-known that

� + 
 = A and �
 = B:

The permanent of an n-square matrix A = (aij) is de�ned by

perA =
X
�2Sn

nY
i=1

ai�(i)

where the summation extends over all permutations � of the symmetric group Sn:
Also one can �nd more applications of permanents in [9].
In [2], [3], the authors consider the relationships between tridiagonal determi-

nants and the Fibonacci and Lucas numbers.
In [5], Lehmer proves a very general result on permanents of tridiagonal matrices

whose main diagonal and super-diagonal elements are ones and whose subdiagonal
entries are somewhat arbitrary.
Minc, in [8], de�ned the super-diagonal matrix and showed that the permanent

of the matrix equals to the order-k Fibonacci number.
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In [6] and [7], the authors gave the relations involving the generalized Fibonacci
and Lucas numbers and the permanent and determinants of the matrices. The
result of Minc, [8], and the result of Lee, [6], on the generalized Fibonacci numbers
are the same. The authors use the same matrix. However, Lee proved the same
result by a di¤erent method, contraction method for the permanent (for more detail
the contraction method see [1]).
In [4], the authors �nd the families of matrices such that permanents of the

matrices, equal to the sums of Fibonacci and Lucas numbers.
In this paper, we develop the relations involving the second order linear recur-

rences and the permanents and determinants of tridiagonal matrices.

2. On The Determinants of Some Tridiagonal Matrices

In this section, �rst, we construct a n� n tridiagonal toeplitz matrix Tn = [tij ]
with entries tk;k = �+ �; tk;k+1 = � and tk+1;k = � for 1 � k � n� 1; that is,

Tn = [tij ] =

0BBBBBB@

�+ � � 0
� �+ � �

� �+ �
. . .

. . .
. . . �

0 � �+ �

1CCCCCCA (2.1)

where �; � are real or complex numbers such that �� 6= 0 and (�+ �)2 6= 4��:

Theorem 1. Let Tn be de�ned as in (2.1). Then, for all n � 1

jTnj =
nP
j=0

�n�j�j :

Proof. We prove that jTnj =
nP
j=0

�n�j�j by induction computing all determinants

by cofactor expansion of determinant with respect to row 1. If n = 1; then

jT1j = j�+ �j = �+ � =
1P
j=0

�1�j�j :

If n = 2; then

jT2j =
���� �+ � �

� �+ �

���� = �2 + �� + �2 = 2P
j=0

�2�j�j :

For the inductive step, we suppose that

jTkj =
kP
j=0

�k�j�j : (2.2)
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We show that the equation holds for k + 1: Then

jTk+1j = (�+ �)

����������
�+ � � 0

� �+ �
. . .

. . .
. . . �

0 � �+ �

����������

��

������������

� � 0
0 �+ � �

0 � �+ �
. . .

. . .
. . . �

0 � �+ �

������������
:

By the Eq. (2.2), we may write the last equation as

jTk+1j = (�+ �) jTkj � �� jTk�1j = (�+ �)
kP
j=0

�k�j�j � ��
k�1P
j=0

�k�1�j�j

= (�+ �)
h
�k + �k�1�1 + : : :+ �1�k�1 + �k

i
���

h
�k�1 + �k�2�1 + : : :+ �1�k�2 + �k�1

i
=

k+1P
j=0

�k+1�j�j :

So the proof is complete. �
Now we consider the sequence fung in (1.1). It is seen that Theorem 1 is an

alternative statement of the Binet equations for the sequences type of fung : Indeed,
from Theorem 1, we know that

jTnj =
nX
j=0

�n�j�j = �n + �n� + �n�1�2 + : : :+ �1�n�1 + �n: (2.3)

If we multiple and divide the formula (2.3) by (�� �) ; then we obtain that

jTnj =
�n+1 � �n+1

�� �

which equals to the Binet equation. For example, when � = 1+
p
5

2 and � = 1�
p
5

2 ;
the determinant of the matrix Tn is reduced to the Binet formula for the (n+ 1)th
Fibonacci number, Fn+1. Also when � = 1+

p
2 and � = 1�

p
2, the determinant

of Tn is reduced to the Binet formula for the (n+ 1)th Pell number, Pn+1.
Secondly, let we de�ne a n� n tridiagonal matrix Hn = (hij) with enries hii =

� + � for 1 � i � n; h1;2 = 2�; hi;i+1 = � for 2 � i � n � 1 and hi+1;i = � for
1 � i � n� 1 where �; � be de�ned as before. Clearly

Hn =

0BBBBBB@

�+ � 2� 0
� �+ � �

� �+ �
. . .

. . .
. . . �

0 � �+ �

1CCCCCCA : (2.4)
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Theorem 2. Let Hn be a matrix as in the form (2.4). Then, for n � 1

jHnj = �n + �n:

Proof. (Induction on n) If n = 1; then

jH1j = j�+ �j = �1 + �1:

If n = 2; then

jH2j =
���� �+ � 2�

� �+ �

���� = �2 + �2:
We suppose that the equation holds for n: Then we obtain

jHnj = �n + �n: (2.5)

Now we show that the equation holds for n+ 1: Then, by computing determinant
by cofactor expansion with respect to last row

jHn+1j = (�+ �) jHnj � �

��������������

�+ � 2� 0
� �+ � �

� �+ �
. . .

. . .
. . . �
� �+ � �

0 0 �

��������������
= (�+ �) jHnj � �� jHn�1j :

By Eq. (2.5), we write the last equation as

jHn+1j = (�+ �) (�n + �n)� ��
�
�n�1 + �n�1

�
= �n+1 + �n+1:

So the proof is complete. �

The conclusion of Theorem 2 is an alternative statement to the Binet formula
of the sequence of fvng taking by � = � and � = 
: Clearly, for � = � and � = 


jHnj = vn

where vn is the nth term of the sequence fvng and � and 
 are the roots of the
characteristic equation of the sequence fvng :
A matrix A is called convertible if there is an n�n (1;�1)�matrix H such that

perA = det (A �H) ; where A�H denotes the Hadamard product of A and H: Such
a matrix H is called a converter of A:
Let S be a (1;�1)�matrix of order n, de�ned by

S =

266666664

1 1 1 : : : 1 1
�1 1 1 : : : 1 1
1 �1 1 : : : 1 1
1 1 �1 : : : 1 1
...

...
...

...
...

1 1 1 : : : �1 1

377777775
:
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Let we denote the matrices Tn � S and Hn � S by An and Bn; respectively. Thus

An =

0BBBBBB@

�+ � � 0
�� �+ � �

�� �+ �
. . .

. . .
. . . �

0 �� �+ �

1CCCCCCA (2.6)

and

Bn =

0BBBBBB@

�+ � 2� 0
�� �+ � �

�� �+ �
. . .

. . .
. . . �

0 �� �+ �

1CCCCCCA : (2.7)

Then we have following Theorems without proof.

Theorem 3. Let the matrix An has the form (2.6). Then for n � 1

perAn =
�n+1 � �n+1

�� � :

Theorem 4. Let the matrix Bn has the form (2.7). Then for n � 1
perBn = �

n + �n:

Furthemore, from [9]; we have that let A be a tridiagonal matrix, and let Â =
(âij) be de�ned by âst = iast if s 6= t and âss = ass; for all s and t

�
i =

p
�1
�
:

Then we have
per (A) = det

�
Â
�
:

Also let we de�ne the following matrices;

Ân =

0BBBBBB@

�+ � i� 0
�i� �+ � i�

�i� �+ �
. . .

. . .
. . . i�

0 �i� �+ �

1CCCCCCA (2.8)

and

B̂n =

0BBBBBB@

�+ � 2i� 0
�i� �+ � i�

�i� �+ �
. . .

. . .
. . . i�

0 �i� �+ �

1CCCCCCA (2.9)

Thus we have following Corollaries without proof.

Corollary 1. Let the n � n tridiagonal toeplitz matrix Ân as in (2.8). Then, for
n � 1

det Ân =
�n+1 � �n+1

�� � :



6 E. KILIC1 AND D. TASCI2

Corollary 2. Let the n� n tridiagonal matrix B̂n be as in (2.9). Then, for n � 1

det B̂n = �
n + �n:

Also it is clear that the value of following determinant is independent of x : (see
p.105, [11]) �������������

a x 0
1
x a x

1
x a x

. . .
. . .

. . .
1
x a x

0 1
x a

�������������
:

If we de�ne the n� n following matrices:

Cn =

0BBBBBB@

�+ � 1 0
�
� �+ � 1

�
� �+ �

. . .
. . .

. . . 1
0 �

� �+ �

1CCCCCCA (2.10)

and

Dn =

0BBBBBB@

�+ � 2 0
�
� �+ � 1

�
� �+ �

. . .
. . .

. . . 1
0 �

� �+ �

1CCCCCCA ; (2.11)

then we have that

detCn =
�n+1 � �n+1

�� �
and

detDn = �
n + �n

where � and � be de�ned as before.
For example, let we take � = 1+

p
5

2 and � = 1�
p
5

2 : Then by using the above
results we have that ������������

1 i 0
i 1 i

i 1
. . .

. . .
. . . i

0 i 1

������������
= Fn+1

where Fn is the nth Fibonacci number. This result is given in [3].
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Let also we take � = 1+
p
2 and � = 1�

p
2 in (2.10). Then by using the above

results we have �� = �1 and������������

2 1 0
�1 2 1

�1 2
. . .

. . .
. . . 1

0 �1 2

������������
= Pn+1

where Pn is the nth Pell number.
Finally, let � = 1+

p
5

2 and � = 1�
p
5

2 : By using the above results, we obtain

per

0BBBBBB@

1 2 0
1 1 1

1 1
. . .

. . .
. . . 1

0 1 1

1CCCCCCA
n�n

= Ln

where Ln is the nth Lucas number.
Indeed, we generalize this representations for all the second order linear recur-

rences by tridiagonal determinants and permanents.
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