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Abstract

In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized
Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their
sums,

Pn
i¼1F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose perma-

nents generate the Lucas p-numbers and their sums.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The well-known Fibonacci {Fn} and Lucas {Ln} sequences are defined by the following equations, for n > 1
0960-0
doi:10.
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Plea
..., C
F n ¼ F n�1 þ F n�2 ð1Þ
where F0 = 0, F1 = 1, and
Ln ¼ Ln�1 þ Ln�2 ð2Þ
where L0 = 2, L1 = 1.
Modern science, particularly physics, [23,24,28–33,57], widely applies these sequences {Fn} and {Ln} which result

from application of the following recurrence relations: for n > 1
F ðnÞ ¼ F ðn� 1Þ þ F ðn� 2Þ ð3Þ
F(0) = 0, F(1) = 1
LðnÞ ¼ Lðn� 1Þ þ Lðn� 2Þ ð4Þ
L(0) = 2, L(1) = 1
In [46,48], the authors considered the rules (3) and (4), then gave the generalization of the Fibonacci and Lucas num-

bers, called the Fibonacci and Lucas p-numbers as, for any given p(p = 1,2,3, . . .) and n > p + 1
779/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Plea
..., C
F pðnÞ ¼ F pðn� 1Þ þ F pðn� p � 1Þ ð5Þ

with initial conditions Fp(0) = 0, Fp(1) = . . . = Fp(p) = Fp (p + 1) = 1, and for n > p
LpðnÞ ¼ Lpðn� 1Þ þ Lpðn� p � 1Þ ð6Þ

where Lp(0) = p + 1, Lp(1) = . . . = Lp(p) = 1, respectively.

The ratio of the successive Fibonacci number is as known golden ratio, that is
s ¼ F nþ1

F n
which is approximately equal 1.618. Also the golden ratio satisfies the characteristic equation of the Fibonacci numbers
t2 � t � 1 = 0. When the case of the Fibonacci p-numbers, the well-known golden ratio is called p-proportion and shown
by sp which satisfies the following equation:
tpþ1 ¼ tp þ 1
There are many applications of the golden ratio and p-proportion in many places of mathematics and physics. For
example, we can take the values of the resistors in Fig. 1 as follows:
R1 ¼ s�p
p R; R2 ¼ spþ1

p R; R3 ¼ spR
where sp is the golden p-proportion, p 2 {0,1,2,3, . . .}.
It is clear that the divider in Fig. 1 gives an infinite number of the different resistor dividers because every p originates

a new divider. In particular, for the case p = 0 the value of the golden 0-proportion s0 = 2 and the divider is reduced to
the classical binary divider. For the case p = 1 the resistors R1, R2, R3 take the following values:
R1 ¼ s�1R; R2 ¼ s2R; R3 ¼ sR
where s ¼ ð1þ
ffiffiffi
5
p
Þ=2 is the classical golden mean. More details can be found in [40].

Furthermore, as examples of physical applications of the golden ratio, in a general theory of high energy particle
theory, i.e., the golden mean have been widely used. For other applications of the golden mean, we can refer to the
well-known works of El Naschie and Marek-Crnjac [20–22,34–39].

Recently, in [40–53,58], many interesting properties and applications of these recurrences have been studied by sev-
eral authors. Especially, in [50,52,53], Stakhov gave the generating matrices of the Fibonacci p-numbers called ‘‘golden’’
matrices and their inverses. Then the author gave the interesting applications to the coding theory called ‘‘golden’’ cryp-
tography. Also in [47], one can find the Binet type formulas for these recurrences and many interesting properties. In
[16], considering the generating matrix of the sequence of the Fibonacci p-numbers, the author used the matrix methods
and then gave the Binet formula, sums and combinatorial representations of the Fibonacci p-numbers. One can find
many properties of the Fibonacci and Lucas p-numbers in webpage of the Museum of Harmony and Golden Section
‘‘http://www.goldenmuseum.com’’.

Further in the earlier works, one can find another generalizations of the Fibonacci and Lucas numbers. For example,
in [25], the author defined the k-generalized Fibonacci numbers as
fn ¼
Xk

j¼1

fn�j for n > k P 2 ð7Þ
with
f0 ¼ f1 ¼ . . . ¼ fk�2 ¼ 0; f k�1 ¼ fk ¼ 1
where fn is the nth k-generalized Fibonacci number.
R2

R3 R1 R1 R1 R1 R3

R2 R2 R2 R2
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Fig. 1.
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In [4], Er considered the definition of k-generalized Fibonacci number, and then defined k sequences of generalized
order-k Fibonacci numbers as shown:
Plea
..., C
gi
n ¼

Xk

j¼1

gi
n�j for n > 0 and 1 6 i 6 k ð8Þ
with initial conditions
gi
n ¼

1 if n ¼ 1� i;

0 otherwise

�
1� k 6 n 6 0 ð9Þ
where gi
n is the nth term of the ith sequence.

In [56], the authors defined k sequences of generalized order-k Lucas numbers as shown:
li
n ¼

Xk

j¼1

li
n�j for n > 0 and 1 6 i 6 k ð10Þ
with initial conditions
li
n ¼

�1 if n ¼ 1� i;

2 if n ¼ 2� i;

0 otherwise

8><
>: 1� k 6 n 6 0
where li
n is the nth term of the ith sequence. For the relationships between the generalized order-k Fibonacci, Lucas

numbers and their Binet formulas and combinatorial representations see [10].
Let A and B be nonzero, relatively prime integers such that D = A2 � 4B 5 0. Define the generalized Fibonacci

sequence, {un}, and the generalized Lucas sequence, {vn}, by for all n P 2
un ¼ Aun�1 � Bun�2 ð11Þ
vn ¼ Avn�1 � Bvn�2 ð12Þ
where u0 = 0, u1 = 1 and v0 = 2, v1 = A. If A = 1 and B = �1, then un = Fn (the nth Fibonacci number) and vn = Ln (the
nth Lucas number).

As a special case of the sequence {un}, in [5], the authors consider k-Fibonacci numbers and their some properties.
The permanent of an n-square matrix A = (aij) is defined by
per A ¼
X
r2Sn

Yn

i¼1

airðiÞ
where the summation extends over all permutations r of the symmetric group Sn. The most important applications of
permanents are in the areas of physics and chemistry. One can find more applications of permanents in [27].

The permanent of a matrix is analogous to the determinant, where all of the signs used in the Laplace expansion of
minors are positive.

A matrix is said to be a (0,1)-matrix if each of its entries 0 or 1.
Many connections between permanents or determinants of tridiagonal matrices and the Fibonacci, Lucas numbers

can be found in literature. For example, Minc [26] defined an n · n super-diagonal (0,1)-matrix F(n,k) for n + 1 P k,
and showed that the permanent of F(n,k) equals a generalized order-k Fibonacci number. When k = 2, the matrix
F(n,2) is reduced to the tridiagonal matrix and its permanent equals a usual Fibonacci number. Also in [54,55], the
authors defined a family of tridiagonal matrices M(n) and showed that the determinants of M(n) are the Fibonacci num-
bers F2n+2. In [19], Lehmer discussed the relationships between permanents of tridiagonal matrices, recurrence relations,
and continued fractions. In [9], the authors defined two tridiagonal matrices and then gave the relationships of the per-
manents and determinants of these matrices and the second order linear recurrences given by (11) and (12). In [11], the
authors present a result involving the permanent of an (�1,0,1)-matrix and the Fibonacci number Fn+1. The authors
then explore similar directions involving the positive subscripted Fibonacci and Lucas Numbers as well as their uncom-
mon negatively subscripted counterparts. For further similar relationships, we can refer to [2,3,12,13,15,17,18].

Let A = [aij] be an m · n real matrix having row vectors a1, a2, . . ., am. We say that A is contractible on column (resp.
row.) k if column (resp. row.) k contains exactly two nonzero entries. Suppose A is contractible on column k with aik 5

0 5 ajk and i 5 j. Then the (m � 1) · ( n � 1) matrix Aij:k obtained from A by replacing row i with ajkai + aikaj and
deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on
row k with aki5 0 5 akj and i 5 j, then the matrix Ak:ij = [Aij:k

T]T is called the contraction of A on row k relative to
se cite this article in press as: Kilic E, Stakhov AP, On the Fibonacci and Lucas p-numbers, their sums, families
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columns i and j. Every contraction used in this paper will be on the first column using the first and second rows. One can
find the following fact in [1]: let A be a real matrix of order n > 1 and let B be a contraction of A. Then
Plea
..., C
per A ¼ per B: ð13Þ
A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V1 and V2 such that every edge of
G joins a vertex in V1 and a vertex in V2. A 1-factor (or perfect matching) of a graph with 2n vertices is a spanning
subgraph of G in which every vertex has degree 1. The enumeration or actual construction of 1-factors of a bipartite
graph has many applications, for example, in maximal flow problems and in assignment and sheduling problems. Let
A(G) be the adjacency matrix of the bipartite graph G, and let l(G) denote the number of 1-factors of G. Then, one can
find the following fact in [27]: lðGÞ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
per AðGÞ

p
.

Let G be a bipartite graph whose vertex set V is partitioned into two subsets V1 and V2 such that jV1j = jV2j = n. We
construct the bipartite adjacent matrix B(G) = [bij] of G as following: bij = 1 if and only if G contains an edge from
vi 2 V1 to vj 2 V2, and 0 otherwise. Then, in [6,27], the number of 1-factors of bipartite graph G equals the permanent
of its bipartite adjacency matrix.

In [17], the authors consider the relationship between the k -generalized Fibonacci numbers given in (7) and 1-factors
of a class of bipartite graph. Also in [7], the authors determine the class of bipartite graph whose number of 1-factors is
the Lucas number, Ln. Also the authors consider the relationships between the sums of the Fibonacci and Lucas num-
bers and 1-factors of certain bipartite graphs. In [8], the authors determine the classes of bipartite digraphs whose num-
ber of 1-factors is the generalized order-k Lucas number, lk

n given by (10) and the sums of the generalized order-k
Fibonacci and Lucas numbers,

Pn
j¼1gk

j and
Pn

j¼1lk
j , respectively.

In this paper, we find families of square matrices such that (i) each matrix is the adjacency matrix of a bipartite
graph; and (ii) the permanent of the matrices are the generalized Fibonacci p-numbers and a sum of consecutive gen-
eralized Fibonacci p-numbers. Further, we give relationships between permanents of certain matrices and the Lucas
p-numbers and their sums.
2. Fibonacci p-numbers

In this section, we determine a class of bipartite graph whose number of 1-factors is the generalized Fibonacci
p-number.

Let n and p be positive integers such that n > p P 1.

Definition 1. Let M(n,p) = [mij] be the n · n (0,1)-matrix with mi+1, i = mi, i = mi, i+p = 1 for a fixed integer p and all i, j,
and 0 otherwise.

Clearly,
Then we have the following Theorem.

Theorem 2. Let G(M(n,p)) be the bipartite graph with bipartite adjacency matrix M(n,p), n P 3. Then the number of

1-factors of G(M(n, p)) is the (n + 1) th generalized Fibonacci p-number, Fp(n + 1).

Proof. Let M ðkÞðn; pÞ ¼ ½mðkÞij � be the kth contraction of M(n,p) for 1 6 k 6 p � 1. Since the definition of the matrix
M(n,p), the matrix can be contracted on column 1 so that
se cite this article in press as: Kilic E, Stakhov AP, On the Fibonacci and Lucas p-numbers, their sums, families
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Plea
..., C
M ð1Þðn; pÞ ¼

1 0 . . . 0 1 1 0 . . . 0

1 1 0 . . . 0 0 1 0 . . .

0 1 1 0 . . . 0 0 1 0

0 0 1 1 0 . . . . . . 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 1 1 0 . . .

0 0 0 . . . . . . 0 1 1 0

0 0 0 0 . . . . . . 0 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
Since the matrix M1(n,p) can be contracted on column 1 and Fp(0) = 0,Fp(1) = Fp(2) = Fp(3) = 1,
M ð2Þðn; pÞ ¼

1 0 . . . 0 1 1 1 0 . . . 0

1 1 0 . . . 0 0 0 1 0 . . .

0 1 1 0 . . . 0 0 0 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 0 0 1 1 0

0 0 . . . . . . . . . . . . 0 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA
where mð2Þ1;p�1 ¼ F pð3Þ, mð2Þ1;p ¼ F pð2Þ, mð2Þ1;pþ1 ¼ F pð1Þ. Continuing this process and since Fp(p + 1) = Fp(p) = . . . =
Fp(1) = 1, Fp(0) = 0, we obtain
M ðp�1Þðn; pÞ ¼

1 1 . . . 1 1 0 . . . 0

1 1 0 . . . 0 1 0 . . .

0 1 1 0 . . . 0 1 0

0 0 1 1 0 . . . 0 1

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 1 1 0 0

0 . . . 0 . . . 0 1 1 0

0 . . . . . . 0 . . . 0 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
where mðp�1Þ
1;1 ¼ F pðp þ 1Þ, mðp�1Þ

1;2 ¼ F pðpÞ; . . . ;mðp�1Þ
1;p ¼ F pð2Þ, mðp�1Þ

1;pþ1 ¼ F pðpÞ.
Now we consider the case p 6 k 6 n � 4. Since the matrix M(p�1) (n,p) can be contracted on column 1 and

Fp(p + 2) = 2
M ðpÞðn; pÞ ¼

2 1 . . . 1 1 0 0

1 1 0 . . . 0 1 0

0 1 1 0 . . . 0 1

0 0 1 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 1 0

0 0 0 . . . 0 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
where mðpÞ1;1 ¼ F pðp þ 2Þ, mðpÞ1;2 ¼ F pðp þ 1Þ; . . . ;mðpÞ1;p ¼ F pð3Þ, mðpÞ1;pþ1 ¼ F pðp þ 1Þ. Since the matrix M(p)(n,p) can be con-
tracted on column 1
M ðpþ1Þðn; pÞ ¼

3 1 . . . 1 2 0 . . . 0

1 1 0 . . . 0 1 0 . . .

0 1 1 0 . . . 0 1 0

0 0 1 1 0 . . . 0 1

. . . . . . . . . . . . . . . . . . . . . . .
.

0 . . . 0 0 1 1 0 ..
.

0 0 . . . 0 0 1 1 0

0 0 0 . . . 0 0 1 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
where mðpþ1Þ
1;1 ¼ F pðp þ 3Þ, mðpþ1Þ

1;2 ¼ F pðp þ 2Þ; . . . ;mðpþ1Þ
1;p ¼ F pð4Þ;mðpþ1Þ

1;pþ1 ¼ F pðp þ 2Þ.
se cite this article in press as: Kilic E, Stakhov AP, On the Fibonacci and Lucas p-numbers, their sums, families
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We only consider the first row because the entries of other rows of M(k)(n,p) are 0 are 1 for all k > 1. Continuing this
process, that is, by repeated contractions, we have
Plea
..., C
mðn�p�1Þ
1;1 ¼ F pðn� p þ 1Þ;

mðn�p�1Þ
1;2 ¼ F pðn� 2p þ 1Þ;

mðn�p�1Þ
1;3 ¼ F pðn� 2p þ 2Þ;

. . .

mðn�p�1Þ
1;pþ1 ¼ F pðn� pÞ:
That is, the matrix M(n�p�1)(n,p) is as follows:
F pðn� p þ 1Þ F pðn� 2p þ 1Þ . . . . . . . . . F pðn� p � 1Þ F pðn� pÞ
1 1 0 . . . 0 0 0

0 1 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 1 1 0 0

0 0 . . . 0 1 1 0

0 0 0 . . . 0 1 1

2
666666666664

3
777777777775
:

By repeating contractions
mðn�pÞ
11 ¼ F pðn� p þ 1Þ þ F pðn� 2p þ 1Þ ¼ F pðn� p þ 2Þ

mðn�pÞ
12 ¼ F pðn� 2p þ 2Þ;

mðn�pÞ
13 ¼ F pðn� 2p þ 3Þ

..

.

mðn�pÞ
1;p ¼ F pðn� pÞ
Thus, we have
M ðn�3Þðn; pÞ ¼
Fpðn� 1Þ F pðn� p � 1Þ F pðn� p � 1Þ

1 1 0

0 1 1

2
64

3
75
Then we have, by contraction of M(n�3)(n,p) on column 1
M ðn�2Þðn; pÞ ¼
F pðnÞ F pðn� pÞ

1 1

� �
By the Eq. (13), perM(n�2)(n,p) = perM(n,p) = Fp(n + 1).
So the proof is complete. h

For example, if we take p = 2, then we have, by Theorem 2
per Mðn; 2Þ ¼ per

1 0 1 0 . . . 0 0 0

1 1 0 1 0 . . . 0 0

0 1 1 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 1 1 0

0 0 0 . . . 0 0 1 1

2
666666666664

3
777777777775

n�n

¼ F 2ðnþ 1Þ
se cite this article in press as: Kilic E, Stakhov AP, On the Fibonacci and Lucas p-numbers, their sums, families
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3. Sums of the consecutive generalized Fibonacci p-numbers

In this section, we determine a class of bipartite graph whose number of 1-factors is the sums of the consecutive
generalized Fibonacci p-number,

Pn
i¼1F pðiÞ.

Let n and p be positive integers such that n > p P 1.

Definition 3. Let T(n,p) = [tij] be the n · n (0,1)-matrix with t1, j = 1 for all j, ti+1, i = 1 for 1 6 i 6 n � 1, ti, i = ti, i+p = 1
for 2 6 i 6 n and a fixed integer p, and, 0 otherwise.

Clearly
Plea
..., C
T ðn; pÞ ¼

1 1 . . . 1 1 1 . . . 1 1

1 1 0 . . . 0 1 0 . . . 0

0 1 1 0 . . . 0 1 0

0 0 1 1 0 . . . 0 1 0

0 0 0 1 1 0 . . . 0 1

0 0 0 0 1 1 0 . . . 0

. . . . . . . . . . . . . .
. . .

. . .
.

. . .

0 0 0 . . . 0 0 1 1 0

0 0 0 0 . . . 0 0 1 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA
Then we have the following Theorem.

Theorem 4. Let G(T(n,p)) be the bipartite graph with bipartite adjacency matrix T(n,p),n P 3. Then the number of 1-
factors of G(T(n,p)) is the sums of the consecutive generalized Fibonacci p-number,

Pn
i¼1F pðiÞ.

Proof. We will use the induction method to prove that per T ðn; pÞ ¼
Pn

i¼1F pðiÞ. If n = 3, then we have, for p = 2
per T ð3; 2Þ ¼ per

1 1 1

1 0 1

1 1 0

2
64

3
75 ¼X3

i¼1

F 2ðiÞ ¼ 3
If n = 4, then we have, for fixed p = 2
per T ð4; 2Þ ¼ per

1 1 1 1

1 0 1 0

1 1 0 1

0 1 1 0

2
6664

3
7775 ¼

X4

i¼1

F 2ðiÞ ¼ 5
Now we suppose that the equation holds for n,n > p P 1. If we compute the per T(n,p) by the Laplace expansion of
permanent with respect to the first column, then we have that
per T ðn; pÞ ¼ per

1 1 . . . 1 1 1 . . . 1

1 1 0 . . . 0 1 0 . . .

0 1 1 0 . . . 0 1 0

0 0 1 1 0 . . . 0 1

0 0 0 1 1 0 . . . 0

. . . . . . . . . . .
. . .

. . .
.

. . .

0 0 . . . 0 0 1 1 0

0 0 0 . . . 0 0 1 1

2
666666666666664

3
777777777777775

þ per

1 0 . . . 0 1 0 . . . 0

1 1 0 . . . 0 1 0

0 1 1 0 . . . 0 1 0

0 0 1 1 0 . . . 0 1

0 0 0 1 1 0 . . . 0

. . . . . . . . . . . . . .
. . .

. . .
.

. . .

0 0 . . . 0 0 1 1 0

0 0 0 . . . 0 0 1 1

2
666666666666664

3
777777777777775
Considering the definitions of the matrices T(n,p) and M(n,p), we write that
per T ðn; pÞ ¼ per T ðn� 1; pÞ þ per Mðn� 1; pÞ
se cite this article in press as: Kilic E, Stakhov AP, On the Fibonacci and Lucas p-numbers, their sums, families
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By our assumption and the Theorem 2, we obtain that
Plea
..., C
per T ðn; pÞ ¼
Xn

i¼1

F pðiÞ þ F pðnþ 1Þ ¼
Xnþ1

i¼1

F pðiÞ
So the proof is complete. h

For example, when p = 1, then the sequence {Fp(n)} is reduced to the well-known usual Fibonacci sequence {Fn},
then by Theorem 4
per

1 1 1 . . . 1 1 1

1 1 1 0 . . . 0 0

0 1 1 1 0 . . . 0

..

.
0 1 1 1 . .

. ..
.

. . . . . . . .
. . .

. . .
. . .

.
0

0 . . . . . . 0 1 1 1

0 . . . . . . . . . 0 1 1

2
6666666666664

3
7777777777775

n�n

¼
Xn

i¼1

F i
which is the well-known result from [14].
4. On the Lucas p-numbers and permanent of certain matrices

In the above results we also determine relationships between the permanents of certain square matrices and the Fibo-
nacci p-numbers. Here we determine the similar directions for the Lucas p-numbers. For these purposes, we define a
new (n · n) matrix H(n,p).

Definition 5. For n > p and p P 1, let H(n,p) = [hij] be the n · n matrix with hi+1, i = hi, i+p = 1 for a fixed integer p and
all i, j,hii = 1 for all i except from i = p + 1,hn�p, n�p = p + 1 and 0 otherwise.

Clearly,
Then we have the following Theorem.

Theorem 6. For n > p P 1,
per Hðn; pÞ ¼ LpðnÞ:
Proof. (Induction on n) First, we consider the case n = p + 1. Then the matrix H(p + 1,p) takes the following form:
Hðp þ 1; pÞ ¼

p þ 1 0 . . . . . . 0 1

1 1 0 . . . . . . 0

0 1 1 0 . . . 0

..

. . .
. . .

. . .
. . .

.
� � �

0 . . . 0 1 1 0

2
666666664

3
777777775
:

0 . . . . . . 0 1 1
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Thus expanding by the Laplace expansion of permanent with respect to the first row gives us
Plea
..., C
per Hðp þ 1; pÞ ¼ per

p þ 1 0 . . . . . . 0

1 1 0 . . . 0

. .
. . .

. . .
. . .

.
� � �

. . . 0 1 1 0

. . . . . . 0 1 1

2
6666664

3
7777775þ per

1 0 . . . . . . 0

1 1 0 . . . ..
.

0 1 1 . .
. ..

.

..

. . .
. . .

. . .
.

0

0 . . . 0 1 1

2
666666664

3
777777775
¼ p þ 2 ð14Þ
By the definition of the Lucas p-numbers, we have for n = p + 1,
Lpðp þ 1Þ ¼ LpðpÞ þ Lpð0Þ ¼ 1þ p þ 1 ¼ p þ 2: ð15Þ

Considering (14) and (15), we have the conclusion for the first case n = p + 1.

Now we consider the case n > p + 1. Suppose that the claim is true for n > p + 1. Then we show that the claim is true
for n + 1. Thus if we expand the perH(n,p) by the Laplace expansion of permanent with respect to first row, then we
obtain by the definition of matrix H(n,p)
per Hðnþ 1; pÞ ¼ per Hðn; pÞ þ per Hðn� p; pÞ

By our assumption and the definition of Lucas p-numbers, we may write
per Hðnþ 1; pÞ ¼ per Hðn; pÞ þ per Hðn� p; pÞ ¼ LpðnÞ þ Lpðn� pÞ ¼ Lpðnþ 1Þ
Thus the proof is complete. h

For example, when n = 6 and p = 2, the matrix H(6,2) takes the following form:
Hð6; 2Þ ¼

1 0 1 0 0 0

1 1 0 1 0 0

0 1 1 0 1 0

0 0 1 3 0 1

0 0 0 1 1 0

0 0 0 0 1 1

2
666666664

3
777777775
Then by Theorem 6, we have
per Hð6; 2Þ ¼ 10
Indeed by the definition of the Lucas 2-numbers, we see that L2(6) = perH(6,2) = 10.
Define also the n · n matrix E(n,p) with ei+1, i = ei, i+p = 1 for a fixed integer p and all i, j,eii = 1 for all i except from

i = p + 1,ep+1, p+1 = p + 1 and 0 otherwise.
Clearly the matrix E(n,p) have the form
Eðn; pÞ ¼

1 0 . . . 0 1 0 . . . 0 0

1 1 0 . . . 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . 1 1 0 . . . 0 1 0

. . . 0 1 p þ 1 0 . . . 0 1

0 . . . 0 1 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 0 1 1

2
66666666666666664

3
77777777777777775
For example when n = 5,p = 2, then
Eð5; 2Þ ¼

1 0 1 0 0

1 1 0 1 0

0 1 3 0 1

0 0 1 1 0

0 0 0 1 1

2
6666664

3
7777775
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Considering the definitions of matrices H(n,p) and E(n,p), we have the following corollary without proof by the result
of Theorem 6.

Corollary 7. For n > p P 1
Plea
..., C
perEðn; pÞ ¼ LpðnÞ
Now we derive relationship between the sums of the Lucas p � numbers subscripted from 0 to n and permanent of a
certain matrix. For this purpose, we give the following definition.

For compactness, we define the n · n matrix G(n,p) as in the following form:
Gðn; pÞ ¼

1 1 . . . 1

1

0 Eðn� 1; pÞ
..
.

0

2
66666664

3
77777775
where E(n,p) be as before.
Then we have the following Theorem.

Theorem 8. For n > p P 1
per Gðn; pÞ ¼
Xn�1

k¼0

LpðkÞ
Proof. We will use the induction method to prove Theorem 8. Let p = 1 and so n = 2. Then
per Gð2; 1Þ ¼ per
1 1

1 2

� �
¼ 3
Since L1(0) = 2,L1(1) = 1,
P1

k¼0L1ðkÞ ¼ 3. Thus the proof is complete for n = 2 and p = 1. Consider the case n = 3 and
p = 1. Then 2 3
per Gð3; 1Þ ¼ per

1 1 1

1 1 1

0 1 2

64 75 ¼ 6
Since also L1(2) = 3,
P2

k¼0L1ðkÞ ¼ 6. So the proof is complete for n = 3 and p = 1. Suppose that the equation holds for
n. Then we show that the equation holds for n + 1. If we extend the perG(n + 1,p) according to the first column, then we
obtain by the definitions of the matrices G(n,p) and E(n,p)
per Gðnþ 1; pÞ ¼ per Gðn; pÞ þ Eðn; pÞ
By our assumption and the result of Corollary 7, we can write
per Gðnþ 1; pÞ ¼ per Gðn; pÞ þ Eðn; pÞ ¼
Xn�1

k¼0

LpðkÞ þ LpðnÞ ¼
Xn

k¼0

LpðkÞ
Thus the proof is complete. h

In the above results, we give relationships between the Fibonacci, Lucas p-numbers and the permanents of certain
matrices. Here we give relationships between determinants of certain matrices and the Fibonacci and Lucas p-numbers
and their sums.

A matrix A is called convertible if there is an n · n(1,�1)-matrix H such that perA = det(A � H), where A � H

denotes the Hadamard product of A and H. Such a matrix H is called a converter of A.
Let S be a (1, � 1)-matrix of order n, defined by
S ¼

1 1 . . . 1 1

�1 1 . . . 1 1

1 �1 . . . 1 1

..

. ..
. ..

. ..
.

1 1 . . . �1 1

2
6666664

3
7777775
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Denote M(n,p) � S,T(n,p) � S,H(n,p) � S and G(n,p) � S by bM ðn; pÞ; bT ðn; pÞ; bH ðn; pÞ and bGðn; pÞ, respectively.
Then we have the following Corollaries without proof.

Corollary 9. For n > p P 1
Plea
..., C
det bM ðn; pÞ ¼ F pðnþ 1Þ
Corollary 10. For n > p P 1
det bT ðn; pÞ ¼Xnþ1

i¼1

F pðiÞ
Corollary 11. For n > p P 1
det bH ðn; pÞ ¼ LpðnÞ
Corollary 12. For n > p P 1
det bGðn; pÞ ¼Xn�1

k¼0

LpðkÞ:
For example, when n = 5 and p = 2
det bGð5; 2Þ ¼
1 1 1 1 1

�1 1 0 1 0

0 �1 3 0 1

0 0 �1 1 0

0 0 0 �1 1

2
6666664

3
7777775 ¼ 14:
Since the definition of the Lucas 2-numbers, we have
P4

i¼0L2ðiÞ ¼ 14.
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