FACTORIZATIONS OF THE PASCAL MATRIX VIA
GENERALIZED SECOND ORDER RECURRENT MATRIX
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ABSTRACT. In this paper, we consider positively and negatively subscripted
terms of generalized binary sequence {Uy } with indices in arithmetic progres-
sion. We give a factorization of the Pascal matrix with a matrix associated
with the sequence {Ui, } for a fixed positive integer k, generalizing results of
[1, 5,6, 7]. Some new factorizations and combinatorial identities are derived as
applications. Therefore we generalize the earlier results on the factorizations
of Pascal matrix.

1. INTRODUCTION

For n > 0, the n x n Pascal matrix P, = [p;;] is defined as follows [4]:

i—1 oo .
0 otherwise.
In [6], it is shown that the matrix P,, satisfies
Pn = fnLna
where the n x n Fibonacci matrix F,, = [f;;] and the matrix L,, = [I;;] are defined
by
(fi)] = Fijy ifi—j+1>0,
W 0 otherwise,
and
i—1 i—2 i—3
lij = ((j—l) - (j—l) - (j—l)) )
respectively and F,, stands for the nth Fibonacci number.
In [7], the authors define an n X n matrix R,, = [r; ;] as follows:

i—1 i—1 i—1
Tij = (j—l) - ( j ) - (j+1)’
and show that P, = R,F,. As an example, they give the following result:

1
(720 = Forait(n=2)Foyt 5 (0" =50 +2) Fory

n—3
n—1 n (n—k)(n—k—1)
+ kz_: (:21) [2 kT W} Fi—pi.
Especially for » = 1, they have

S (G- ) - (D) Fe=1
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Furthermore they define an n x n matrix U,, as in the form:

[ 1 0 0 0 ... 0 0]
0 1 00 00
—F; 1 1 0 0 0

U,=| —F1+ 011 00|
—F, 0 0 1 00

| —-F, 00 0 ... 1 1|

and the matrices Uy and R, by Uy = I,,_1® Uy, and R,, = [1] ® R,,_1. Then the
authors give the following factorization:

Rn = RnUvny
Rn - U1U2~ UnflUn
Let
1 0 0 1 0 O
So=111 0], Sy=]01 0],
1 0 1 0 1 1

S, =8So® I, forkeN, Gy =1,, Gy =1, 3®S_1,and G = I, ® Si_3 for
k> 3.
In [5], the authors give the following factorization :
Fn = G1Gs...Gy, (1.1)

where F,, is defined as before.
In [3], the authors show that the Stirling matrix S, = (S (,));; of the second
kind can be written in terms of the Pascal matrix P, :

Sn - Pn ([1] 5> Snfl) )
where the S (i, j)/s are the Stirling numbers of the second kind defined by the
following recurrence:
Sn,k)y=Sn-1,k-1)+Sn—-1k).

In [1], the authors define the n x n matrix W,, = [w;;] and Pell matrix E,, = [e;;]
as shown
P oifj=1,
0 otherwise,
and e;; = P;_jy1 if i —j 4+ 1 > 0 and 0 otherwise where P; is the ¢th Pell number.
Then they show that

E, =W, (Il 3] anl) (]2 @ Wn72) (In72 @ W2> .

The Fibonacci and Lucas sequences have been discussed in so many studies.
Further various generalizations and matrix representations of these sequences have
been also introduced and investigated by many authors.

For n > 0 and nonnegative integers A and B such that A% + 4B # 0, the
generalized Fibonacci and Lucas type sequences {U,} and {V,,} are defined by

Un+1 = AUn + BUnflv
Vn+1 = AVn + BVn—lv
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where Uy = 0, Uy = 1 and Vy = 2, Vi = A, respectively. When A = B = 1,
U, = F, (nth Fibonacci number) and V,, = L,, (nth Lucas number).

The authors [2] consider positively and negatively subscripted terms of the se-
quences {Ugn,} and {Vj,,} for a fixed positive integer k. They obtain relationships
between these sequences and the determinants of certain tridiagonal matrices. Fur-
ther, the authors give more general trigonometric factorizations and representa-
tions for the terms of {Uiyy,} and {Vig,}. Generating functions and combinatorial
representations of them are derived. Finally they obtain the following recurrence
relations for £k > 0 and n > 1,

Uk n
Vk n

VkUk(nfl) + (_1)k+1 BkUk(n72)7
k+1 nk
Vkvk(n—l) + (71) B Vk(”—Q)'

In this paper, we consider positively and negatively subscripted terms of gen-
eralized binary sequence {U,}. We give a factorization of the Pascal matrix with
a matrix associated with the sequence{Ui,}. Also some new factorizations and
combinatorial identities are derived as applications of our results. Therefore we
generalize the results of some earlier studies on these factorizations.

2. FACTORIZATIONS OF THE PASCAL MATRIX VIA RECURRENT MATRICES
ASSOCIATED WITH THE {Uyg,}

In this section, we define a matrix associated with the sequence {Uig,}. Then
we obtain some factorizations of the Pascal matrix by this new matrix and derive
new identities as an applications of these factorizations.

Let the n x n lower triangular matrix H,, = [h;;] be defined as follows:

L { Utiojynr ifi—j+1>0,

otherwise.

Clearly the matrix H,, is in the form

Uiy 0
Usxok Utk
H, = | Uzsk Utor Ui
Uskn Uspn-1) Utkn-2) --- Uxk
Now we define an n x n matrix C,, = [¢;;] with ¢;; = Uik ((;j) _ %(1;1) I
(J‘__&) (—B)ik) if i > j and 0 otherwise.

Then we can give the following theorem.

Theorem 1. Forn > 0,
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Proof. To prove the theorem, it is sufficient to show P, H, ! = C,,. The inverse of
H,, is given by

1 :
Uik
_ Vi 1
Utk Utk
(=B)** Vi
, Utk Utk
-1 _ _
Hy = (hij) o 0 (=B)*F .. 1
Utk ’ Utk
. _ Vi 1
’ ’ ( U)i:é:k Utk
-B Vik 1
L 0 0 Uik T Uxx Ugp
In order to prove that P, H, ! = C,,, now consider the case for i > 1 and j = 1. By
the definitions of P, and H, !, we write
i
> pikhiy = piahig +pighh g +pishs
k=1
_(i-1y 1 i—1 Vig i—1\ ((=B)**
= (e + () () + (3) (%2)
_ 1 : Vip |, (i=2)(—1) +k
= on - - Dgg + 5 B
Since the definition of C,,,
_ 1 i—1 i—1Y Utk i—1 +k
Gl = T, ((10 ) - (V)T + () (=B) ) ’
and so we get the required conclusion
i
> pikhy = cin
k=1
For : > 1 and j > 2, we obtain
n
Y vkl = pigh i+ pigrih + pirehia
k=1
_ i—1\ 1 i—1 Vig i—1) (=B)**
= (Do + ) () + () S
i—1\ 1 i—1\ U2k i—1y (=B)**
(;‘71) Utr (lj ) Uf:: + (;H) Utr
From the definition of C,,, we write
n
> pigkhy = cij.
k=1
Then we obtain that P, H,, ! = C,,. Thus the proof is complete. O
As a result of Theorem 1, we may give the following identity without proof
Corollary 1. Forn >1r >0,

n
(o) = 2 (62 = (5 v+ (720) (-B)7)
In particular, if we take r = 1 in Corollary 1, we have
2 (620 = () Ver+ () (-B)7)

UtG—r+1)k
Uitk :

Utje _
Utr 1
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Lemma 1. For1<14,5 <mn,
i—2 i—2 i—2 +k\ Utjr
2 (72 = () Var+ (59 (-B)™) e
J ,

. ; i i —B)**k
= (-2 g2 — () Var+ (77) 2.

Uik

P

3

Proof. (By induction on ). Clearly the equation holds for ¢ = 3. Assume that the
equation holds for i > 4. Thus

5 (7 — (hvae + (57) (-BY=) Gy

j=3

= S (0 - (v () By
5 (07 - v+ (D p™)

= (6D CDvaer (DB G
+5 (078 - (Ve (59 (-3)*) S

= (-2 (P Vet (777) G
£33 ((22) = (Vi + () (-B)™)
j=2

(VarUsje—(=B)* Usy_1)k)
X e .
™

After some calculations and by Corollary 1, we get

Zi_:l ((;:é) - (;:i)vik + (’;1) (—B)ik> UUiTiJ:

j=3
. V2 i i _B)*k
= (i~ D~ ((3)Var+ (1) T
So the proof is complete. O

Now, we define the n x n matrices T},, C,, and T} by

_ 1 _
UUik 0

+2k

1- e

_Uj:Bk 1 1

Uik
Tn = _Utar 0 1 1 ;
Utk

U:Enk. . . . .
-0 0 11

C,=1]®C,_1 and Ty, = I,,_j, ® Ty, where C,, is defined as before.

Lemma 2. Forn >0,

C, =C,T,.
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Proof. We denote the (i, j) element of the matrix C,, by ¢; ;. Then,
1 ifi=1,j=1,

Cij=12 0 ifi#£l,j=1lori=1,j#1,
Ci—1,j—1 otherwise.

Let C,,T,, = [K; ;] and T}, = [t; ;] . Obviously K 1 = %ﬂ =c1,1, Koo = Uik =ca9,

K1 = E‘i’“ =cy and K; ; =0 for ¢ < j. Since t;; = —% fori>3,7=1and

from Lemma 1, we have

=
Il
-

Cijtjn = jé Ci—1,j-1t5,1

(629 - %262 + () -8™) ptia

() = T2 (0 + () CB)™) it

-5 (68 - 420D + (59 B)™) o

- (-G () ) ()
(=2 = (e + (7)) (S27))

= () (an+ (3 B

= G-

2

J

I
M-

J

Il
/

In general, for ¢ > 2, 7 > 2, from the definition of C,,, we get

[
Kij= > Cimtmj = ci-1j-1:1+cio1;.1=cij.
m=1

Thus the proof is complete. O

Lemma 3. Forn >0,

Cn, = TITQ B A 1Tn .

Proof. From the definitions of C,, and T, the proof directly follows. (]
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For example, when n = 4 in Lemma 3, we obtain

I L 0 0
1-Vig 1 0
Uyt Uik
Cy = 12V + (= B)** 2-Viy 1
Utk Utk Utk
1-3Vip+3(—=B)E*  3-3Vip+(—B)**  3-Vy,
L Utk Utk Utk Utk

0 0 0 1 0

1 0 0
0 1 0 0 1-— Uiok
1

UUik
_ Yt2k
0 1 Ty

|

O O O
o O = O
O = OO
O O O

(=)

—
_ = OO
_ o O O

1
Utk

0
1— Yz g
1
0

Ui
_Uisk
Uik
_Utar
Utk

= TZWT.T5T,.
Now define

_ O O O O O o=

_ = o O

—(—B)ik 0 1 0 Ugor Uzip

My=My® I, keN,and Ay =1,, Ao =1, 3®&M_1, Ay =1, ® My_3, k > 3.
Therefore, we easily obtain the following result without proof.

Lemma 4. Forn >0,
H, =A1A5...A,.

In particular, when n = 4,

[ Uip 0 0 0
o = Usor  Uxp 0 0
Ussk Uz Uxr 0O
| Utar Uzsp Uzor Uxg
1 0 0 O 1 0 0 0
. 01 0 O 0 1 0 0 «
0 0 1 0 0 0 Uygg 0
L0 0 0 1 0 0 Uzxor Uyg
(1 0 0 0 Uiy 0 0 0
0 Uiy 0 0 Vig 1 0 0
0 Vi 10 —(=B**" 0 1 0
L0 —(=B)*" 0 1 0 00 1
= A1A5A3A,.

Corollary 2. Forn >0,
Pn = Can = Tlfg...Tn_lanlAg...An.

Proof. From Theorem 1 and Lemma 4, we have the conclusion. (I
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Now we define an nxn matrix C;, = [¢] ;] with ¢} ; = Uik ((;j) - %(;j) + (;:‘i) (—B)ik>

if ¢ > j and 0 otherwise. Therefore, we can give the following theorem.
Theorem 2. Let P,, H,,C!, be the n x n matrices defined as above. Thus, we have
P, =H,C].

Proof. Tt is sufficient to show H, 1P, = C/,

. Let H,'P, = [z;;]. Here note that
the matrix H;l is in the form

B 1

Utk 0
_Var 1

Uik Uik
(=B)*F Vi 1

1 Uik Uik Uik
Hn = 0 (_B):tk
Uty
_Var 1
Utk Utk
0 0 =B)*F iy 1
L Uik Utk Uzp

Clearly 211 = ¢ 1, 221 = ¢33, 222 = ¢4 and for i < j, z; ; = ¢;; = 0. Since the

+k
all elements of the first column of P, are 1, we have z; ; = % fori >3
and j = 1. For 4,5 > 2, from the definition of C/, we obtain

n
_ ! R / L / X . ! . .
Zij = hi,kka = hi,ipld + hi,i—lpl—ld + hi,i—2p1—2d
j=1
o 1 (i—1 _ Var ) (-2 (—B)*F 1i—3
Uik (jfl) + ( Uj:k) (]‘,1) + Uyt (jfl)
_ /
= Gy

Thus the proof is complete.

From Theorem 2, we get the following result:

Corollary 3. Forn >1r >0,
(o) = 2 () (6D - CDvee + (D 3.
j=r
In particular, when r = 1, we obtain
3 () (1= 09 vae + (059 (-B)) =1
We define an n x n matrix @, by
- 1

Utk
1-Vig

Uik
1—Vip+(—B)*F

Qn

—_ = = O
= = O O
= o O O
o O O O

Uik
1-Vyp+(=B)**
Utk

O I T T
L +k

If we take 6:1 = [1] ® C),_,, the following result is easily seen.
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Lemma 5. Forn >0,

/ —/
C, =QnC,.
When n = 4, we get
r 1
1U‘i/lc 0 0 0
—V+k 1
o = Utk ! Utk 0 0
4 = 1-Viw+(=B)*F 2—Viy, 1 0
Uty Uiy Utk
1-Viet(=B)*"  3-2Vi,+(-B)**  3-Va, 1
L Uty Uiy Utk Uik
r 1
Uir 0 00 1 0 0 0
1-Vig 1
T B L
= 1-Vipt(—B) —Vi 1
T Uxr 110 0 Usk Usk 0
1- Vit (—B)** 0 1-Vix+(=B) 2—Vig 1
L Uti 111 Ui Uty Utg

= QuC}.
Lemma 6. Let the matriz Qy be defined as before and Q, = I,_r © Q. Then

Crlz = Qn@n—l . '@2@1 .

We can give the following example:

r 1
1U‘i/k 0 0
—V4k 1
Cils = Utk Uik 0
1-Vip+(=B)**  2-vy, 1
L Uysg (o Uiy
r 1
T 00 L 0 0 10 0
- R I = RO
_ _ —Vig
I 1 Vikl;;(k B) 11 0 Uik,k 1 0 0 oo
Q3Q,Q,

Now, we consider an n x n matrix T}, = [t} ;] with

Uy, ifi>1,j=1,
th .= 1 ifi=4,1,7>2,
0 otherwise.

Now we can give the following results:

Lemma 7. Forn > 1,

H, =T, ([l] & Ho_1).

Proof. Let T}, ([1] ® Hp—1) = (yi,;) - Since (1, 1) —element of the matrix [1]&H,,_ is
1 and other elements are zero in the first column of this matrix, we get y; 1 = Utk
For ¢ > 1, j > 2 and ¢ > j, using definitions of 7, and [1] ® H,_1, we obtain
Yij = Us(i—jynr- For i < j, we obtain y; ; = 0. Finally we get y; ; = hy; for
1 <i,7 < n which completes the proof. (I
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When n = 6 in Lemma 7,

Ui 0 0 0 0 0
Uior Uyg 0 0 0 0
He — Ussp Usor Uxp 0 0 0
Utar Ussp Uxpop Usyg 0 0
Ussk Usar Uxsp Usor Uz O
| User Ussk Uxar Uxspg Uzor Uxp
[ U, 0 0 0 0 O 1 0 0
Uio,. 1 0 0 0 O 0 Uik 0
| Uik 00100 0|0 Ui Us
N Uis, 0 01 0 O 0 Uszr Uxop
Uis,. 0 0 0 1 0 0 Uzar Uszsg
i Ui, 0 0 0 0 1 0 Uisey Ugag
— T[] e Hs).
Lemma 8. If we define T;. =1, BT}, then
H, =TT, ,.T,T,.
For example, when n = 5 in Lemma 8, we have
[ Uiy 0 0 0 0
Utior, Uip 0 0 0
Hy = Utz Usar Uxg 0 0
Ustar Ussp Uxop Usp 0O
| Ussi Uxar Uzsp Uzor Uxy
[ Ui 0 0 0 O [ 1 0 0 0 O
Uior,. 1 0 0 0 0 Uge 0 0 O
= Uy, 01 0 0 0 Ui, 1 0 O
Ugg, 0 0 1 0 0 Uz, 0 1 0
| Ussi 00 0 1|0 Usge 0 0 1
1 0 0 0 0 ] 1 0 0 O 0
01 0 0 0 0O 1 0 O 0
x| 0 0 1 0 0 0 01 0 0
0 0 0 Ugr O 0 0 0 1 0
0 0 0 Usxop 1_ 0 0 0 0 Uxg
- mrr,
Now we define an n x n matrix D,, as in the form:
T Ui 0 0 0
Vik 1 0 O
—(-B)* 0 1 0
Dy, = 0 00 1
0 00 0

Then we have the following factorization.

OO OO

0

0

0
Uig
Ut
Udisg

oo oo~

OO O+ O

o o oo

Utg
Uik

Ui
Usak
U4sk

OO OO

0
Uik

O = O OO

_— o O OO



FACTORIZATIONS OF THE PASCAL MATRIX 11

Lemma 9. Forn > 1,
H, =([1]® Hyn-1) Dy.

Proof. Since the (i,j) —element of [1] @ H,_; is h;; and the definition of D, the

result is readily seen. O

For n = 4 in Lemma 9, we obtain

Ui 0 0 0
H, Usor  Uxp 0 0
Ussy Usar Uxxp 0O
Utar Ussp Usor Uiy

1 0 0 0 Uiy 0 0 O
o 0 Uy 0 0 V:tk 100
T | 0 Usar Uz O —(=B* 0 1 0
| 0 Ussr Uz Usg 0 0 0 1

= (1] ® Hs) Dy.

If we define an n x n matrix Dy with D, = I,,_; ® Dy, then we can give the
following result.

Lemma 10. Forn > 1, -
Hy, = D1D>...Dy, 1Dy,

When n =4 in Lemma 10, we get

[ Uygp 0 0 0
H = Usor Uxp 0 0
Ussk U2 Uxx 0O
| Usar Uiz Usar Usg
1 0 0 0 1 0 0 0
_ 01 0 0 0 1 0 0 «
o 0 0 1 0 0 0 Usr O
(000 U | |00 Vi 1
M1 0 0 0 Uiy 0 0 O
0 Ui 0 0 Vg 1 0 0
0 Vip 10 --B)** 0 1 0
L0 —(=B)*" 0 1 0 00 1
= D1Dy;DsD,.

3. CONCLUSION

In the present paper we introduce the n X n matrix H, whose entries are
U, satisfying the general second order recurrence formula Uy, = ViUg(n—1) +

(fl)lﬂ'1 BkUk(n_z) with initial conditions 0, Uy for k& > 0 and n > 1. We use the
matrix H, instead of the n x n Fibonacci matrix F,, in factorizations P, = R,Fn,
and P, = F,L, given in [7] and [6], respectively. Here we obtain new matrices
correspond to the matrices R, and L,. Therefore we give more generalized fac-
torizations of the n x n Pascal matrix P,. Further, using these factorizations, the
sequence {Uyg,} and the matrix H, associated with the sequence {Uyy,}, we
generalize various results in [1, 3, 5, 6, 7].
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