MATRIX REPRESENTATION OF THE SECOND ORDER
RECURRENCE {uy,}
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ABSTRACT. In this note, we consider a generalized Fibonacci se-
quence {un} . Then give a generating matrix for the terms of sequence
{ugn } for a positive integer k. With the aid of this matrix, we derive
some new combinatorial identites for the sequence {ugn, }.

1. INTRODUCTION

Let r be a nonzero integer such that D = /72 + 4 # 0. The generalized
Fibonacci and Lucas sequences {uy} and {v,} are defined by the following
equations

Upy1 = TUp + Up_1 (1.1)
and

Un+1 = TUp + Up—1 (12)
where ug = 0, u; = 1 and vy = 2, v1 = 7, respectively.

When r = 1, u,, = F,, (the nth Fibonacci number) and v,, = L,, (the
nth Lucas number).

If o and 8 are the roots of the equation 22 — rz — 1 = 0, then the Binet
formulas of the sequences {u,} and {v,} have the forms

a—=p"

a—f

Up = and v, = a" + 3",

respectively.

Matrix methods are very convenient for deriving certain properties of
linear recurrence sequences. Some authors have used matrix methods or
other methods to derive some identities, combinatorial representations of
linear recurrence relations etc. [3, 5, 9, 13, 14, 15, 18, 22]. In [23], the
author formulate the nth power of an arbitrary 2 x 2 matrix. In [1], the
author considers functions over 2 x 2 matrices other than addition and
multiplication and then he proves that any positive integer power of such
a matrix could be expressed as a linear combination of the matrix and the
identity matrix. In [3], the author considers a 2 x 2 companion matrix and
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he derives some known relations involving Fibonacci numbers as well as
many new relations. In [18], the author gives a new formula for the nth
power of an arbitrary 2 x 2 matrix and derive various matrix identities
and formulae for the nth power of particular matrices to obtain various
combinatorial identities.

Recently some authors gave an interesting relationships between the spe-
cially multiplicative functions and the second order recurrence {u,, } by con-
sidering their matrix representations. It is worth noting that the specially
multiplicative functions satisfy a matrix recurrence relation similar to the
sequence {uy, } . For more details, we refer to [7, 19]. For similar connections
between kth order linear recurrences and rational arithmetical functions are
also derived in [21, 12].

In [16], the authors derive the following recurrence relations for the se-
quences {ug,} and {vgy,} for k> 0 and n > 1,

Uk = ViUk(n—1) + (= 1) T g (1.3)
and

Ukn = VkVk(n—1) + (=1)" T 0p(n_2)
where the initial conditions of the sequences {ug,} and {vg,} are 0 and uy,
and 2 and vy, respectively.

If o (k) and B (k) are the roots of equation 2 — vzz + (—1)* = 0, then
the Binet formulas of the sequences {ug,} and {vg,} are given by

Wi = i I and v = o (K)" + B (k)"

respectively. It is clear that (1) = a and (1) = 8. From the Binet
formulas, one can see that

Uy = (_1)kn+1ukn and U2kn = VinUWkn - (14)

2. MATRIX REPRESENTATIONS FOR THE SEQUENCE {ugy}

In this section, we define a 2 x 2 matrix A and then we give some new
results for the sequence {ugy,} by matrix methods.
Define the 2 x 2 matrix A as follows:

asfu o)

By an inductive argument and using (1.3), we get
an- b { Upngn) (1) gy, } .
U Ukn (=D g1y
Clearly the matrix A" satisfies the recurrence relation: for n > 0
AL = g A" 4 (1) AL (2.1)
where A =1, Al = A.



MATRIX REPRESENTATION OF THE SECOND ORDER RECURRENCE {up,} 3

If we use the equation (2.1), we can write

vp ATt — (v,% - (—1)k) A" 4 A2 = 0. (2.2)
From the (1, 1)-entries of the matrix equation (2.2), we get
op D (0 - (1Y) Ml e (2.3)

Thus we have
k
V= (('U,Ig - (_1) ) Uk(n+1) — uk(nfl)) /uk(n+2). (24)

The simple form of equation (2.4) can be found in [10, 11].
For n > 0, if we consider the fact that det (A") = (det A)", then we
obtain the generalized Cassini identity:

(—D)F" w2 if ks odd,

2
U Uk(n—1) — Uy =
k(n+1)Uk(n—1) kn { (_1)k"+1 u? if k is even.

For example, for k = r = 1, we get F,, (1 F,,_1 — F? = (—=1)" (see page 74,
[17]).

By the Binet formulas, one can see that

Uk(na1) + (=1 T w1y = upvpn. (2.5)
The eigenvalues of A™ are the roots of the equation
u%)\z — uk(uk(m_l) + (—1)k+1uk(n_1)))\ + (_1)kn ulzC =0
or by (2.5), we may rewrite it as
A2 — g A+ ()M = 0.

Thus the characteristic roots of A™ are given by

Ao = (v;m +/v2, + 4(1)’”“) /2.

Now we shall derive some results for {ux,} by matrix methods.
Theorem 1. For alln,m € Z,
Uk Uk(ntm) = Wkm Uk(nt+1) T (fl)kﬂuk(,n_l)ukn. (2.6)
Proof. Since A"™™ = A" A™ and after some simplifications, we obtain

Antm — Ui |: Uk (n42) (_1)k+1uk(n+l) :|
Uk (n41) (_1)k+1ukn

Uk
k+1
Uk(m—1) |: (_1) + Uk (n41) Ukn :|

R (DM g, ug

Thus we obtain
uk’Aner = ukerAn+1 + (_1)k+1 uk(mfl)An (27)
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which, by equating (2, 1)-entries of (2.7), gives the conclusion. O
When m = n in (2.6), we obtain

Uk U2kn = Ukn (Uk(n+1) + (_1)k+1uk(n—1)) (2.8)

which, by (1.4), gives the equality in (2.5) for ug, # 0. By equating (1,1)-
entries of the equality (2.7) and by taking m = n, we obtain

ukuk(2n+1) = ui(n+1) + (—].)IH_IU,%”. (29)
From the above results, we obtain
ukAQn — uknAn-‘rl + (_1)k+1 uk(nfl)An

and so the general cases of the well known divisibility properties for the
Fibonacci numbers (see [17]):

Ukn | Ugkn and Vg, ‘ U2kn - (210)
Theorem 2. Fork >0 andn € Z,

1 u? oty + 2u?, +ul e if k is odd,
Uk(2n+1) T Uk(2n—1) = — { h(nt1) zk k(n=1)

U U’k(n+1) - uk:(nfl) ka 18 even,
(2.11)
and
1 “i —uj, if k is odd
— = — (n+1) k(n—1) )
Uk(2n+1) — Uk(2n—1) Ug { ui(nﬂ) — 2u%n + ui(nil) if k is even.
(2.12)

Proof. Considering the (1,1) and (2,2)- entries of the matrix equation
AP = (A™)? we get

Ukllk@nt1) = Upinyr) + (1) ud,, (2.13)
Uplgen—1) = Upy + <_1)k+1“i(n71)- (2.14)

By adding and substracting of (2.13) and (2.14) side by side, we have the
conclusion.
]

Corollary 1. Fork >0 and n € Z,

U2k U2kn = ui("H—U - ui(n—l)' (215)

Proof. If we combine the equalities (2.11) and (2.12) , then we can write

up, (uk(2n+1) +(-1)" uk(2n—1)) = U i1y — Uk(n_1)- (2.16)
Using the recurrence relation {uy,} in (2.16), we obtain

uk (VkUgkn) = Uj(np1) = Ui(n—1)- (2.17)
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The conclusion is clear from (1.4). O

For any integer p, A" = A"*P A"~P_ Here if we consider the (2, 1)-entries
of the product A"TPA"~P and the matrix A?", we get
UkU2kn, = Wk(n+p)Uk(n—p+1) T (_1)k+1“k(n+p—1)“k(n—p)'

Since det A # 0, we can write the matrix A" as A%2"+t™A~™ and then by
equating (2, 1)-entries of this equation, we have

Uk U2kn = Uk(2n+m)U—k(m—1) + (_1)k+1uk(2n+m—1))ufkm- (218)
Since u_ gy = (—1)F™*luy,,, we can write

UkU2kn = Uk(2n+m)Uk(1—m) T (_1)k(m+l)uk(2n+m—1))ukm' (2.19)
By a similar argument, we may obtain

Uh(2nm) k(1 —m) + (1) D000 g,

(_1)(k+1)

= Uk(ntm)Uk(n—m+1) + Uk (ntm—1)Uk(n—m)-  (2.20)

3. SOME NEW COMBINATORIAL REPRESENTATIONS FOR {ukn }

In this section, we consider the binomial expansion of A™ for some n
and then derive some new combinatorial representations for the sequence

{ukn}~

Theorem 3. Forn > 0,

n - 0 if n is odd
ny(_1yn—t+1, ¢t _ :
S (DD Vg Uk(n—t) = { Qi if m is even, (3.1)
and
n(ny/_ qyn(k+1)—t, ¢ o 0 if n is odd,
Dot (t)( 1) VpUk(n—t) = { i ifn is cven. (3.2)
Proof. If we consider the matrix relation
A" = (ka+ (1)t A*l)n
= YL (D(=nEDmtyf gzt (3.3)

and equating (2, 1)-entries of the equality (3.3), we get

Ukn = Z?:O (?)(_l)nitJrlUZuk(n—t)-
Thus one can easily obtain (3.1).
Similarly, equating the (1,2)-entries of the equality (3.3), we get (3.2).
This completes the proof. O

Theorem 4. Forn,k > 0,

Usr = Z?:O (?)(_1)(k+1)(TL_t)U]€;ukt'
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Proof. If we write A2" in the form

A= S () () E A (3.4)
then, by equating the (2, 1)-entries of the equality (3.4), we have the con-
clusion. 0

Theorem 5. Forn > 0,

Uk(2nt1) = Z?:o (ftljrrll)(_1)(k+1)(n_t)vlz;+1ukt + (_1)n(k+1)uk_ (3.5)

Proof. Since A?"*t1 = AA?" for any n € Z and using (3.4), we get
AT = 3T () ()T g AT, (3.6)
which yields
Upnt1) = 2ormo (1) (DT E by,
which yields
Uk(2n1) = Z?:o (vtlill)(_1)(k+1)(n7t)vi+1ukt i (_1)n(k+1)uk.
Thus the proof is complete. O

Relation (3.5) can also be obtained by iterating A?"*! = v, A% +
(—1)F*+1A2"=1 Thus we get

A2n+1 _ 1}]{)14271 + (_1)k+1A2n—1
_ ,UkAQn + (_l)k-l—l(vaQn—Q + (_1)k+1A2n—3)

= ZO (tzjo (n;t)) (71)(k+1)(n7p)1)£14p + (71)(k+1)(n+1)A71.
p: =

From [20], it is well known that
n n—t\ _ (n+1
Zt:O( P ) - (p+1)’
so we obtain

A2+l — ZZ:O (;_—:j)(71)(k+1)(nfp)vz+1Ap + (71)(k:+1)(n+1)A71. (37)
From (3.7), we get (3.5).

Theorem 6. Forn >0 andt,s € Z,

Uk (tnts) = Z;=0 (?)(*1)(nfp)(kJrl)”Uzuk((t—2)n+s+p) (3.8)
Proof. We consider the following matrix relation:
Atnts  — gn(t=2)+s g2n _ gn(t—2)+s ZZZO (Z)(—l)("—p)(kﬂ)viAp
= T (D) (—1) Dy A2y

which gives us (3.8). Thus the proof is complete. O
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Theorem 7. Let k be an odd integer and p > 0,
Uk(pn41) + Ukpn = Uk D poq Ukt + U (3.9)
Proof. For p > 0, consider
AP [ = (A—D)(AP" P AP2 L AP AT (3.10)
Thus
(A+I)(A" — 1)

(A2 —D)(AP L AP 2 L AT A
v A(APPTE AP L AP L AT

pn t
= Vg tlA'

Equating the (2,1)-entries of this matrix relation, we get equation (3.9).
This completes the proof. O

Theorem 8. Forn > 0,

n n—1 . .
‘ L ukensn w2300 gy if kois even, 311
Uk t; 2kt { Uk(2n+1) — Uk if k is odd, (3.11)
and
n Uakn + 2 Z?:ll Uope if k is even,
= = 12
Uk ;::1 Uk(2e-1) { U2km if k is odd. (3.12)
Proof. By the recurrence relation of {A™}, we can write
Uk 21;1 A2t + (_1)(k+1) Z;;l A1 ;L:l A2t
Vg Z?:l A2t+(*1)(k+1)(A+Z?:_11 A2t+1) _ ?:_11 A2t+1 +A/42n+1
Considering required entries of the equation just above, the proof is com-
plete. O

For arbitrary integers p and ¢ such that p* + 4q # 0, the sequence {w,, }
is defined by
Wy, = PWp—1 + qWn—2
for wg = a, wy = b and for n > 1.
In [10], the authors considered the sequence {w,, } and gave the following
result:

wn (a,b,0,0) = a0 (=) )"
+ (b= pa) g () () g (3.13)
Then we have the following result.

Corollary 2. For n,k > 0,

Ui = U ZtL(:%—U/QJ (nftlft)(_l)t(kjtl)v'g—l—%

Proof. The proof directly follows from (3.13). O
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Let C' be an arbitrary 2 x 2 matrix, 7' and D denote the trace and
determinant of C| respectively. For the distinct eigenvalues a and [ of
matrix C, the following result can be found in [18, 6]:

Lemma 1. If
PR —ﬁ" _ ZLn 1)/2] ( )Tn 2m—1 (T2 4D)m
- 2” 1 2m+1

ai

then C™ = z,C — z,_1DI5, where I is the identity matriz of order 2.

As a consequence of Lemma 1, we obtain that

W = e LI (G o (v -4 (-1 (3.14)

From also [18], let g be a complex number such that g2 +Tg+ D # 0,9 # 0
and let n be a positive integer. Then

" = () S X () (B) B)'e )

Therefore we get the following result of equality (3.15).

Theorem 9. For n > 0 and any every complex number g different from

0,1/2 and (vk + /02 —|—4(—1)k+1) /2,

(=1p* k(i—t) t—2i
Ukn mzogw D (= 1RED gt=2iy

Let the k& x k companion matrix is as follows:

a e Ch—1 Ck
1 0 0 0
Ap=| 0 1 0 0
0 0 ... 1 0

Consider the kth order recurrence {z, } defined by z,, = c12,—1+cazn_2+
..+ cpzn_g forn > k—1 and z;” s are arbitrary for 0 < ¢ < k — 1. Thus it
follows that
T T
[Znth—1) Zntk—2, - 2n] = A} [Zh—1, 262, .-, 20) " -
Thus the power A} determines the solution to the recurrence {z,} in terms
of the initial conditions zg, z1,...,2k_1-
We find the following Theorem in [4].

Theorem 10. The (i,7) entry agl) in the matriz A} is given by the fol-
lowing formula:

ti+tiv1+...+t
(n) S jttiva k (tltJlrftz;:“;rktk)ctl_ c};’“ (3.16)

1] ti+ta+...+tk
(t1,t2,...tx)
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where the summation is over nonnegative integers satisfying t1 +2ta + ...+
kt, =n —i+j and the coefficients in (3.16) is defined to be 1 if n =1 — j.

When a; = v, and ay = (—l)kﬂ in the sequence {z,} and consider-
ing the recurrence {uy,} and its companion matrix, we give the following
Corollary.

Corollary 3. Forn,k > 0,

ti+ta), t tok
Ukn = Uk Z(tl,tz) (tll,t;)vkl (-1)7

where the summation is over nonnegative integers satisfying t1 +2to = n—1

and the coefficients in (3.4) is defined to be 1 if n =i — j.

Similarly one can find the basic multinomial formula for kth order lin-
ear recurrences in [8]. Also applying the results of recent studies [2, 18]
on the similar topics, many various combinatorial representations for the
recurrences {ug,} and {vg,} can be derived.

We should note that one can apply many earlier results for our matrix A
to obtain some different results. Also considering the results of the present
paper, many analogue formulas for the generalized Lucas sequence {vi,}
can be derived by considering and extending the simple relation between
the vector of Lucas sequence and generating matrix of Fibonacci sequences:

Lpyi | _ | Fagr  Fy 1
L, o F, F,_1 2|
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