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Abstract. In this note, we consider a generalized Fibonacci se-
quence fung : Then give a generating matrix for the terms of sequence
fukng for a positive integer k: With the aid of this matrix, we derive
some new combinatorial identites for the sequence fukng.

1. INTRODUCTION

Let r be a nonzero integer such that D =
p
r2 + 4 6= 0. The generalized

Fibonacci and Lucas sequences fung and fvng are de�ned by the following
equations

un+1 = run + un�1 (1.1)

and
vn+1 = rvn + vn�1 (1.2)

where u0 = 0; u1 = 1 and v0 = 2; v1 = r; respectively.
When r = 1; un = Fn (the nth Fibonacci number) and vn = Ln (the

nth Lucas number).
If � and � are the roots of the equation x2 � rx� 1 = 0; then the Binet

formulas of the sequences fung and fvng have the forms

un =
�n��n
��� and vn = �n + �

n;

respectively.
Matrix methods are very convenient for deriving certain properties of

linear recurrence sequences. Some authors have used matrix methods or
other methods to derive some identities, combinatorial representations of
linear recurrence relations etc. [3, 5, 9, 13, 14, 15, 18, 22]. In [23], the
author formulate the nth power of an arbitrary 2 � 2 matrix. In [1], the
author considers functions over 2 � 2 matrices other than addition and
multiplication and then he proves that any positive integer power of such
a matrix could be expressed as a linear combination of the matrix and the
identity matrix. In [3], the author considers a 2� 2 companion matrix and
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he derives some known relations involving Fibonacci numbers as well as
many new relations. In [18], the author gives a new formula for the nth
power of an arbitrary 2 � 2 matrix and derive various matrix identities
and formulae for the nth power of particular matrices to obtain various
combinatorial identities.
Recently some authors gave an interesting relationships between the spe-

cially multiplicative functions and the second order recurrence fung by con-
sidering their matrix representations. It is worth noting that the specially
multiplicative functions satisfy a matrix recurrence relation similar to the
sequence fung : For more details, we refer to [7, 19]. For similar connections
between kth order linear recurrences and rational arithmetical functions are
also derived in [21, 12].
In [16], the authors derive the following recurrence relations for the se-

quences fukng and fvkng for k � 0 and n > 1;
ukn = vkuk(n�1) + (�1)k+1uk(n�2) (1.3)

and
vkn = vkvk(n�1) + (�1)k+1vk(n�2)

where the initial conditions of the sequences fukng and fvkng are 0 and uk;
and 2 and vk, respectively.
If � (k) and � (k) are the roots of equation x2 � vkx + (�1)k = 0; then

the Binet formulas of the sequences fukng and fvkng are given by

ukn = uk
�(k)n��(k)n
�(k)��(k) and vkn = � (k)

n
+ � (k)

n
;

respectively. It is clear that � (1) = � and � (1) = �. From the Binet
formulas, one can see that

u�kn = (�1)kn+1ukn and u2kn = vknukn: (1.4)

2. Matrix representations for the sequence fukng

In this section, we de�ne a 2 � 2 matrix A and then we give some new
results for the sequence fukng by matrix methods.
De�ne the 2� 2 matrix A as follows:

A =

�
vk (�1)k+1
1 0

�
:

By an inductive argument and using (1.3), we get

An =
1

uk

�
uk(n+1) (�1)k+1ukn
ukn (�1)k+1uk(n�1)

�
:

Clearly the matrix An satis�es the recurrence relation: for n > 0

An+1 = vkA
n + (�1)k+1An�1; (2.1)

where A0 = I; A1 = A:
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If we use the equation (2.1), we can write

vkA
n+1 �

�
v2k � (�1)

k
�
An +An�2 = 0: (2.2)

From the (1; 1)-entries of the matrix equation (2.2), we get

vk
uk(n+2)
uk

�
�
v2k � (�1)

k
�
uk(n+1)
uk

+
uk(n�1)
uk

= 0: (2.3)

Thus we have

vk=
��
v2k � (�1)

k
�
uk(n+1) � uk(n�1)

�
=uk(n+2): (2.4)

The simple form of equation (2.4) can be found in [10, 11].
For n � 0; if we consider the fact that det (An) = (detA)

n
; then we

obtain the generalized Cassini identity:

uk(n+1)uk(n�1) � u2kn =
(
(�1)kn u2k if k is odd,
(�1)kn+1 u2k if k is even.

For example, for k = r = 1; we get Fn+1Fn�1 � F 2n = (�1)n (see page 74,
[17]).
By the Binet formulas, one can see that

uk(n+1) + (�1)k+1 uk(n�1) = ukvkn: (2.5)

The eigenvalues of An are the roots of the equation

u2k�
2 � uk(uk(n+1) + (�1)k+1uk(n�1))�+ (�1)kn u2k = 0

or by (2.5), we may rewrite it as

�2 � vkn�+ (�1)kn = 0:
Thus the characteristic roots of An are given by

�1;2 =

�
vkn �

q
v2kn + 4 (�1)

kn+1

�
=2:

Now we shall derive some results for fukng by matrix methods.

Theorem 1. For all n;m 2 Z;
ukuk(n+m) = ukmuk(n+1) + (�1)k+1uk(m�1)ukn: (2.6)

Proof. Since An+m = AnAm and after some simpli�cations, we obtain

An+m = ukm
u2k

�
uk(n+2) (�1)k+1uk(n+1)
uk(n+1) (�1)k+1ukn

�
+
uk(m�1)
u2k

�
(�1)k+1uk(n+1) ukn
(�1)k+1ukn uk(n�1)

�
:

Thus we obtain

ukA
n+m = ukmA

n+1 + (�1)k+1 uk(m�1)An (2.7)
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which, by equating (2; 1)-entries of (2.7), gives the conclusion. �

When m = n in (2.6), we obtain

uku2kn = ukn
�
uk(n+1) + (�1)k+1uk(n�1)

�
(2.8)

which, by (1.4), gives the equality in (2.5) for ukn 6= 0. By equating (1; 1)-
entries of the equality (2.7) and by taking m = n; we obtain

ukuk(2n+1) = u
2
k(n+1) + (�1)k+1u2kn: (2.9)

From the above results, we obtain

ukA
2n = uknA

n+1 + (�1)k+1 uk(n�1)An

and so the general cases of the well known divisibility properties for the
Fibonacci numbers (see [17]):

ukn j u2kn and vkn j u2kn: (2.10)

Theorem 2. For k > 0 and n 2 Z;

uk(2n+1) + uk(2n�1) =
1

uk

(
u2k(n+1) + 2u

2
kn + u

2
k(n�1) if k is odd,

u2k(n+1) � u2k(n�1) if k is even,

(2.11)
and

uk(2n+1) � uk(2n�1) =
1

uk

(
u2k(n+1) � u2k(n�1) if k is odd,
u2k(n+1) � 2u2kn + u2k(n�1) if k is even.

(2.12)

Proof. Considering the (1; 1) and (2; 2)- entries of the matrix equation
A2n = (An)2, we get

ukuk(2n+1) = u2k(n+1) + (�1)k+1u2kn; (2.13)

ukuk(2n�1) = u2kn + (�1)k+1u2k(n�1): (2.14)

By adding and substracting of (2.13) and (2.14) side by side, we have the
conclusion.

�

Corollary 1. For k > 0 and n 2 Z;
u2ku2kn = u

2
k(n+1) � u2k(n�1): (2.15)

Proof. If we combine the equalities (2.11) and (2.12) , then we can write

uk

�
uk(2n+1) + (�1)k uk(2n�1)

�
= u2k(n+1) � u2k(n�1): (2.16)

Using the recurrence relation fukng in (2.16), we obtain
uk (vku2kn) = u

2
k(n+1) � u2k(n�1): (2.17)
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The conclusion is clear from (1.4). �

For any integer p; A2n = An+pAn�p: Here if we consider the (2; 1)-entries
of the product An+pAn�p and the matrix A2n; we get

uku2kn = uk(n+p)uk(n�p+1) + (�1)k+1uk(n+p�1)uk(n�p):
Since detA 6= 0; we can write the matrix A2n as A2n+mA�m and then by
equating (2; 1)-entries of this equation, we have

uku2kn = uk(2n+m)u�k(m�1) + (�1)k+1uk(2n+m�1))u�km: (2.18)

Since u�km = (�1)km+1ukm; we can write
uku2kn = uk(2n+m)uk(1�m) + (�1)k(m+1)uk(2n+m�1))ukm: (2.19)

By a similar argument, we may obtain

uk(2n+m)uk(1�m) + (�1)k(m+1)uk(2n+m�1)ukm
= uk(n+m)uk(n�m+1) + (�1)(k+1)uk(n+m�1)uk(n�m): (2.20)

3. Some new combinatorial representations for fukng

In this section, we consider the binomial expansion of An for some n
and then derive some new combinatorial representations for the sequence
fukng.

Theorem 3. For n > 0;Pn
t=1

�
n
t

�
(�1)n�t+1vtkuk(n�t) =

�
0 if n is odd,

2ukn if n is even,
(3.1)

and Pn
t=1

�
n
t

�
(�1)n(k+1)�tvtkuk(n�t) =

�
0 if n is odd,

2u�kn if n is even.
(3.2)

Proof. If we consider the matrix relation

An =
�
vkI + (�1)k+1A�1

�n
=

Pn
t=0

�
n
t

�
(�1)(k+1)(n�t)vtkA�n+t; (3.3)

and equating (2; 1)-entries of the equality (3.3), we get

ukn =
Pn

t=0

�
n
t

�
(�1)n�t+1vtkuk(n�t):

Thus one can easily obtain (3.1).
Similarly, equating the (1; 2)-entries of the equality (3.3); we get (3.2).

This completes the proof. �

Theorem 4. For n; k > 0;

u2kn =
Pn

t=0

�
n
t

�
(�1)(k+1)(n�t)vtkukt:
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Proof. If we write A2n in the form

A2n =
Pn

t=0

�
n
t

�
(�1)(k+1)(n�t)vtkAt; (3.4)

then, by equating the (2; 1)-entries of the equality (3.4), we have the con-
clusion. �

Theorem 5. For n > 0;

uk(2n+1) =
Pn

t=0

�
n+1
t+1

�
(�1)(k+1)(n�t)vt+1k ukt + (�1)n(k+1)uk: (3.5)

Proof. Since A2n+1 = AA2n for any n 2 Z and using (3.4), we get
A2n+1 =

Pn
t=0

�
n
t

�
(�1)(n�t)(k+1)vtkAt+1; (3.6)

which yields

uk(2n+1) =
Pn

t=0

�
n
t

�
(�1)(n�t)(k+1)vtkuk(t+1);

which yields

uk(2n+1) =
Pn

t=0

�
n+1
t+1

�
(�1)(k+1)(n�t)vt+1k ukt + (�1)n(k+1)uk:

Thus the proof is complete. �

Relation (3.5) can also be obtained by iterating A2n+1 = vkA
2n +

(�1)k+1A2n�1: Thus we get
A2n+1 = vkA

2n + (�1)k+1A2n�1

= vkA
2n + (�1)k+1(vkA2n�2 + (�1)k+1A2n�3)

...

= vk
nP
p=0

�
nP
t=0

�
n�t
p

��
(�1)(k+1)(n�p)vpkA

p + (�1)(k+1)(n+1)A�1:

From [20], it is well known thatPn
t=0

�
n�t
p

�
=
�
n+1
p+1

�
;

so we obtain

A2n+1 =
Pn

p=0

�
n+1
p+1

�
(�1)(k+1)(n�p)vp+1k Ap + (�1)(k+1)(n+1)A�1: (3.7)

From (3.7), we get (3.5).

Theorem 6. For n > 0 and t; s 2 Z;
uk(tn+s) =

Pn
p=0

�
n
t

�
(�1)(n�p)(k+1)vpkuk((t�2)n+s+p) (3.8)

Proof. We consider the following matrix relation:

Atn+s = An(t�2)+sA2n = An(t�2)+s
Pn

p=0

�
n
p

�
(�1)(n�p)(k+1)vpkA

p

=
Pn

p=0

�
n
p

�
(�1)(n�p)(k+1)vpkA

(t�2)n+s+p

which gives us (3.8). Thus the proof is complete. �
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Theorem 7. Let k be an odd integer and p > 0;

uk(pn+1) + ukpn = vk
Ppn

t=1 ukt + uk: (3.9)

Proof. For p > 0, consider

Apn � I = (A� I)(Apn�1 +Apn�2 + :::+A2 +A+ I): (3.10)

Thus

(A+ I)(Apn � I) = (A2 � I)(Apn�1 +Apn�2 + :::+A2 +A+ I)
= vkA(A

pn�1 +Apn�2 + :::+A2 +A+ I)

= vk
Ppn

t=1A
t:

Equating the (2; 1)-entries of this matrix relation, we get equation (3.9).
This completes the proof. �

Theorem 8. For n > 0;

vk
nP
t=1
u2kt =

�
uk(2n+1) + uk + 2

Pn�1
t=1 uk(2t+1) if k is even,

uk(2n+1) � uk if k is odd,
(3.11)

and

vk
nP
t=1
uk(2t�1) =

�
u2kn + 2

Pn�1
t=1 u2kt if k is even,

u2kn if k is odd.
(3.12)

Proof. By the recurrence relation of fAng, we can write
vk
Pn

t=1A
2t + (�1)(k+1)

Pn
t=1A

2t�1 =
Pn

t=1A
2t+1

vk
Pn

t=1A
2t + (�1)(k+1)(A+

Pn�1
t=1 A

2t+1) =
Pn�1

t=1 A
2t+1 +A2n+1

Considering required entries of the equation just above, the proof is com-
plete. �

For arbitrary integers p and q such that p2 + 4q 6= 0; the sequence fwng
is de�ned by

wn = pwn�1 + qwn�2

for w0 = a, w1 = b and for n > 1:
In [10], the authors considered the sequence fwng and gave the following

result:

wn (a; b; p; q) = a
Pbn=2c

t=0 (�1)t
�
n�t
t

�
pn�2tqt

+(b� pa)
Pb(n�1)=2c

t=0 (�1)t
�
n�1�t

t

�
pn�1�2tqt:(3.13)

Then we have the following result.

Corollary 2. For n; k > 0;

ukn = uk
Pb(n�1)=2c

t=0

�
n�1�t

t

�
(�1)t(k+1)vn�1�2tk

Proof. The proof directly follows from (3.13). �
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Let C be an arbitrary 2 � 2 matrix, T and D denote the trace and
determinant of C; respectively. For the distinct eigenvalues � and � of
matrix C; the following result can be found in [18, 6]:

Lemma 1. If

zn :=
�n��n
��� = 1

2n�1

Pb(n�1)=2c
m=0

�
n

2m+1

�
Tn�2m�1

�
T 2 � 4D

�m
;

then Cn = znC � zn�1DI2, where I2 is the identity matrix of order 2:

As a consequence of Lemma 1, we obtain that

ukn =
uk
2n�1

Pb(n�1)=2c
i=0

�
n

2i+1

�
vn�2i�1k

�
v2k � 4 (�1)

k
�i
: (3.14)

From also [18], let g be a complex number such that g2+Tg+D 6= 0; g 6= 0
and let n be a positive integer. Then

Cn =
�

gD
g2+Tg+D

�n 2nP
t=0

tP
i=0

�
n
i

��
n
t�i
� �

D
g2

�i �
g
D

�t
Ct: (3.15)

Therefore we get the following result of equality (3.15).

Theorem 9. For n > 0 and any every complex number g di¤erent from

0; 1=2 and
�
vk �

q
v2k + 4 (�1)

k+1

�
=2;

ukn =
gn(�1)kn

(g2+vkg+(�1)k)n
2nP
t=0

tP
i=0

�
n
i

��
n
t�i
�
(�1)k(i�t)gt�2iukt:

Let the k � k companion matrix is as follows:

Ak =

2666664
c1 c2 : : : ck�1 ck
1 0 : : : 0 0
0 1 : : : 0 0
...

...
. . .

...
...

0 0 : : : 1 0

3777775 :
Consider the kth order recurrence fzng de�ned by zn = c1zn�1+c2zn�2+

: : :+ ckzn�k for n > k� 1 and zi�s are arbitrary for 0 � i � k� 1: Thus it
follows that

[zn+k�1; zn+k�2; : : : ; zn]
T
= Ank [zk�1; zk�2; : : : ; z0]

T
:

Thus the power Ank determines the solution to the recurrence fzng in terms
of the initial conditions z0; z1; : : : ; zk�1:
We �nd the following Theorem in [4].

Theorem 10. The (i; j) entry a
(n)
ij in the matrix Ank is given by the fol-

lowing formula:

a
(n)
ij =

P
(t1;t2;:::tk)

tj+tj+1+:::+tk
t1+t2+:::+tk

�
�
t1+t2+:::+tk
t1;t2;:::;tk

�
ct11 : : : c

tk
k (3.16)
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where the summation is over nonnegative integers satisfying t1+2t2+ : : :+
ktk = n� i+ j and the coe¢ cients in (3.16) is de�ned to be 1 if n = i� j:

When a1 = vk and a2 = (�1)k+1 in the sequence fzng and consider-
ing the recurrence fukng and its companion matrix, we give the following
Corollary.

Corollary 3. For n; k > 0;

ukn = uk
P

(t1;t2)

�
t1+t2
t1;t2

�
vt1k (�1)

t2k

where the summation is over nonnegative integers satisfying t1+2t2 = n�1
and the coe¢ cients in (3.4) is de�ned to be 1 if n = i� j:

Similarly one can �nd the basic multinomial formula for kth order lin-
ear recurrences in [8]. Also applying the results of recent studies [2, 18]
on the similar topics, many various combinatorial representations for the
recurrences fukng and fvkng can be derived.
We should note that one can apply many earlier results for our matrix A

to obtain some di¤erent results. Also considering the results of the present
paper, many analogue formulas for the generalized Lucas sequence fvkng
can be derived by considering and extending the simple relation between
the vector of Lucas sequence and generating matrix of Fibonacci sequences:�

Ln+1
Ln

�
=

�
Fn+1 Fn
Fn Fn�1

� �
1
2

�
:
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