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Abstract. In this paper we consider second order recurrences {Vk} and {Un} .
We give second order linear recurrences for the sequences {V±kn} and {U±kn}.

Using these recurrence relations, we derive relationships between the determi-

nants of certain matrices and these sequences. Further, as generalizations of
the earlier results, we give representations and trigonometric factorizations of

these sequences by matrix methods and methods relying on Chebyshev poly-

nomials of the first and second kinds. We give the generating functions and
some combinatorial representations of these sequences.

1. Introduction

Let A and B be nonnegative integers such that A2 + 4B 6= 0. The generalized
Lucas sequence {Vn (A,B)} and the generalized Fibonacci sequence {Un (A,B)}
are defined by: for n > 0

Vn+1 (A,B) = AVn (A,B) +BVn−1 (A,B)
Un+1 (A,B) = AUn (A,B) + Un−1 (A,B)

where V0 (A,B) = 2, V1 (A,B) = A and U0 (A,B) = 0, U1 (A,B) = 1, respectively.
We will frequently use the notations Vn and Un instead of Vn (A,B) and Un (A,B) .
The Binet formulas of the sequences {Un} and {Vn} are given by

Un =
αn − βn

α− β
and Vn = αn + βn

where α and β are the roots of the equation t2 −At−B = 0.
When A = B = 1, then Vn (1, 1) = Ln (nth Lucas number) and Un (1, 1) = Fn

(nth Fibonacci number).
Lind (cf. [8, p. 478]) first gave the following trigonometric factorization of

Fibonacci numbers and then, two years later Zeitlin derived a factorization of the
Lucas numbers using trigonometric factorizations of the Chebyshev polynomials of
the first kind [19]:

Fn =
n∏
k=1

(1− 2i cos (kπ/n) ,

Ln =
n−1∏
k=0

(1− 2i cos (2k + 1)π/2n) .
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In [17] and [4], the authors gave complex factorization of the Fibonacci numbers
by considering the roots of Fibonacci polynomials. In [10], the author established
the following representations:

Fn = in−1
sin

(
n cos−1

(
− i2

))
sin(cos−1(− i

2 )) , Ln = 2in cos
(
n cos−1

(
− i

2

))
, n ≥ 1

Also in [3], the authors obtained the same results on the trigonometric factoriza-
tions of the Fibonacci and Lucas numbers by matrix methods. The matrix method
was first used by them.

Recently, in [7], the authors consider the backward second order linear recur-
rences and they gave the trigonometric factorizations and representations of these
sequences. Note that this case will be special case with k = 1 of the present paper.

The second order linear recurrences have been studied by many authors. For
example, in [1], the author gave the following combinatorial representation:

Vn =
bn/2c∑
k=0

n

n− k

(
n− k
k

)
An−2kBk (1.1)

Un+1 =
bn/2c∑
k=0

(
n− k
k

)
An−2kBk (1.2)

There are many relationships between linear recurrence relations and determi-
nants of certain matrices. For example, the generalized Lucas sequence can be
obtained by the following determinant (see [15, 16, 5, 6]):∣∣∣∣∣∣∣∣∣∣∣∣

A −2B
1 A −B

1 A
. . .

. . . . . . −B
1 A

∣∣∣∣∣∣∣∣∣∣∣∣
= Vn.

Especially the case A = B = 1 can be found in [2]. Furthermore one can find
similar special relationships in [16, 15, 9, 5, 6].

In this paper, we consider the positively and negatively kn subscripted terms of
the sequences {Vn} and {Un}, and we derive relationships between these and the
determinants of certain tridiagonal matrices. Then we give the general trigono-
metric factorizations and representations of terms of these sequences {V∓kn} and
{U∓kn}. We also present generating functions and combinatorial representations
of these sequences.

2. Forward and Backward Generalized Lucas Sequences {Vkn} , {V−kn}

In this section, for an arbitrary positive integer k, we consider the terms Vkn
and give a second order linear recurrence relation for the sequence {Vkn}. We start
with the following useful lemma.

Lemma 1. For k > 0, and n > 1, the terms Vkn satisfy the following recurrence
relation

Vkn = VkVk(n−1) + (−1)k+1
BkVk(n−2).
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Proof. From the Binet formula and since αβ = −B, we can write

VkVk(n−1) + (−1)k+1
BkVk(n−2)

= VkVk(n−1) − (−B)k Vk(n−2)

=
((
αk + βk

) (
αk(n−1) + βk(n−1)

)
− (αβ)k

(
αk(n−2) + βk(n−2)

))
= αkn + βkn

= Vkn,

which is as desired. �

Now we describe a relationship between the terms of sequence {Vkn} and the
determinant of a certain tridiagonal matrix.

Define the n× n tridiagonal matrix Tn = (tij) by

Tn =



Vk 2 (−B)k/2

(−B)k/2 Vk (−B)k/2

(−B)k/2 Vk
. . .

. . . . . . (−B)k/2

(−B)k/2 Vk


.

Theorem 1. For n > 1
detTn = Vkn,

where detT1 = Vk.

Proof. We will use the principle of mathematical induction to show that detTn =
Vkn. If n = 2, then, by Lemma 1, we obtain

detT2 =

∣∣∣∣∣ Vk 2 (−B)k/2

(−B)k/2 Vk

∣∣∣∣∣ = V2k.

Suppose that the equation holds for n− 1. Then we show that the equation holds
for n. Expanding detTn by the Laplace expansion of a determinant according to
the last row, we obtain

detTn = Vk detTn−1 − (−B)k detTn−2.

By our assumption and the result of Lemma 1, we have the required conclusion:

detTn = VkVk(n−1) − (−B)k Vk(n−2) = Vkn.

�

In the remaining of the section we consider the terms of the backward Lucas
sequence {V−kn}, and we give a second order linear recurrence relation for these,
similar to the positively subscripted terms. Then we determine a certain matrix
whose successive determinants equal the terms V−kn.

Lemma 2. For k ≥ 1 and n > 1,

V−kn = (−B)−k
(
VkV−k(n−1) − V−k(n−2)

)
.

Proof. From the Binet formulas of sequence {V−n} , we have that αβ = −B and so
V−n = Vn (−B)−n. The proof follows from Lemma 1. �
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Now we give a relationship between the determinant of a certain tridiagonal
matrix and the terms of the backward general Lucas sequence.

Define the n× n tridiagonal matrix Hn by

Hn =



V−k 2 (−B)−k/2

(−B)−k/2 V−k (−B)−k/2

0 (−B)−k/2 V−k
. . .

. . . . . . (−B)−k/2

(−B)−k/2 V−k


.

As a consequence of Theorem 1, we have the following result.

Corollary 1. For n > 1,
detHn = V−kn

where detH1 = V−k.

Proof. From the definitions of the matrices Hn and Tn, using the identity V−n =
(−B)−n Vn, it is seen that Hn = (−B)−k Tn, and so

detHn = (−B)−kn detTn. (2.1)

By Theorem 1 and equation 2.1, we obtain

detHn = (−B)−kn Vkn = V−kn.

The proof is complete. �

3. Trigonometric factorizations of the General Lucas sequences
{Vkn} and {V−kn}

In this section we give the trigonometric factorizations and representations of
the generalized Lucas sequences {Vkn} and {V−kn} by matrix methods.

Define the n× n tridiagonal matrix Q as below:

Q =


0 2

1 0
. . .

. . . 1
1 0

 .
The characteristic equation of the matrix Q satisfies the following equation

tn+1 (λ) = −λtn (λ)− tn−1 (λ) , n > 0,

where t0 (λ) = −λ and t1 (λ) = λ2 − 2.
The Chebyshev polynomials of the first kind are defined by the following equation

Tn (x) = 2xTn−1 (x)− Tn−2 (x) , n > 1,

where T0 (x) = 1, T1 (x) = x.
The zeros of the Chebyshev polynomials of the first kind are given by (for more

details see [11, 12, 14])

xk = cos (2k−1)π
2n , k = 1, 2, . . . , n.
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If we take λ ≡ −2x, then the sequence {tn (λ)} is reduced to the sequence of
Chebyshev polynomials of the first kind, {2Tn (x)} . Therefore the zeros of the
characteristic equation of matrix Q are given by

λk = −2 cos (2k−1)π
2n , for k = 1, 2, . . . , n (3.1)

From the definitions of Q and Tn, we can write Tn = VkIn + (−B)k/2Q where In
is the n× n unit matrix.

Theorem 2. For n > 1,

Vkn =
n∏
r=1

[
Vk − 2 (−B)k/2 cos

(
(2r−1)π

2n

)]
.

Proof. Let λr, r = 1, 2, . . . , n, be the eigenvalues of Q with respect to eigenvectors
xr. Then, for all r

Tnxk =
[
VkIn + (−B)k/2Q

]
xr = VkInxr + (−B)k/2Qxr =

[
Vk + (−B)k/2 λr

]
xr.

Thus µr = Vk + (−B)k/2 λr, r = 1, 2, . . . , n, are the eigenvalues of Tn. Thus by
(3.1)

detTn =
n∏
r=1

[
Vk + (−B)k/2 λr

]
=

n∏
r=1

[
Vk − 2 (−B)k/2 cos

(
(2r−1)π

2n

)]
,

and the proof is complete. �

As a corollary, we obtain Lind’s result [8, p. 478].

Corollary 2. When A = B = k = 1, then by the above theorem, we obtain

Ln =
n∏
r=1

[
1− 2i cos

(
(2r−1)π

2n

)]
.

As a consequence of Theorem 2, we give the following corollary.

Corollary 3. For n > 1,

V−kn =
n∏
r=1

[
V−k − 2 (−B)−k/2 cos

(
(2r−1)π

2n

)]
.

Proof. From Theorem 2, we have

Vkn =
n∏
r=1

[
Vk − 2 (−B)k/2 cos

(
(2r−1)π

2n

)]
.

Multiplying the above equation by (−B)kn , we have the conclusion since V−n =
(−B)−n Vn. �

Alternatively, one can consider the equation Hn = V−kIn+(−B)−k/2Q, and the
next result follows.

Theorem 3. For k ≥ 1 and n > 1,

V∓kn = (−B)∓kn/2 cos
(
n cos−1

(
V∓k

2(−B)∓k/2

))
.
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Proof. First, we consider the case Vkn. If the n × n matrix Gn has the following
form

Gn (x) =


2x 2 0

1 2x
. . .

. . . . . . 1
0 1 2x

 , (3.2)

then it is seen that detGn (x) = 2Tn (x) where {Tn (x)} is the sequence of the
Chebyshev polynomials of the first kind. Thus

detTn = (−B)kn/2 detGn
(

Vk

2(−B)k/2

)
= (−B)kn/2 Tn

(
Vk

2(−B)k/2

)
Defining x = cos θ allows the Chebyshev polynomials of the second kind to be
written as (see [12])

Tn (x) = cosnθ. (3.3)

Then by (3.3) and the value of determinant of matrix Tn, we obtain

Vkn = (−B)kn/2 cos
(
n cos−1

(
Vk

2(−B)k/2

))
.

For the case of V−kn, we consider

detHn = (−B)−kn/2 detG
(

V−k

2(−B)−k/2

)
= (−B)−kn/2 Tn

(
V−k

2(−B)−k/2

)
,

from which the proof follows. �

Corollary 4. For k ≥ 1 and n > 1 even,

V∓kn =
bn/2c∏
r=1

[
V 2
∓k − 4 (−B)∓k cos2

(
(2r−1)π

2n

)]
and for n > 1 odd

V∓kn = V∓k

(n−1)/2∏
k=1

[
V 2
∓k − 4 (−B)∓k cos2

(
(2r−1)π

2n

)]
.

Proof. These are immediate consequences of Theorem 2 and Corollary 3, since, for
1 ≤ k < n/2, cos (kπ/n) = − cos ((n− k)π/n) . �

4. The Generalized Fibonacci Sequence {Un (A,B)}

In this section, we consider the recurrence {Un} and then obtain two recurrence
relations for the sequences {Ukn} and {U−kn} . Also we determine certain tridiag-
onal matrices and then we obtain relationships between the determinants of these
matrices and the sequences {Ukn} and {U−kn} . Therefore, we obtain trigonometric
factorizations and representations of these sequences. We start with the following
useful lemma.

Lemma 3. For k ≥ 1 and n > 1,

Ukn = VkUk(n−1) + (−1)k+1
BkUk(n−2).
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Proof. From the Binet formula of the sequences {Un}, {Vn} and since αβ = −B,
we can write

VkUk(n−1) + (−1)k+1
BkUk(n−2)

= VkUk(n−1) − (−B)k Uk(n−2)

=
((
αk + βk

) (
αk(n−1)−βk(n−1)

α−β

)
− (αβ)k

(
αk(n−2)−βk(n−2)

α−β

))
= αkn−βkn

α−β

= Ukn.

The proof is complete. �

Define the n× n tridiagonal Toeplitz matrix Mn by

Mn =


Vk (−B)k/2

(−B)k/2 Vk
. . .

. . . . . . (−B)k/2

(−B)k/2 Vk

 .
Since U2k = UkVk, we have immediately the following result.

Theorem 4. For n > 1,

detMn =
Uk(n+1)

Uk
,

where detM1 = U2k/Uk.

Proof. It is known that the tridiagonal Toeplitz matrices satisfy

detMn = Vk detMn−1 − (−B)k detMn−2.

From the principle of mathematical induction and Lemma 3, the result follows. �

Lemma 4. For k ≥ 1 and n > 1,

U−k(n+1) = (−B)−k
(
VkU−kn − U−k(n−1)

)
= V−kU−kn − (−B)−k U−k(n−1)

Proof. By the Binet formulas of {U−n} and {V−n} , we can write

(−B)−k VkU−kn − (−B)−k U−k(n−1)

= (−B)−k
(
VkU−kn − U−k(n−1)

)
= (−B)−k

((
αk + βk

) (
α−kn−β−kn

α−β

)
−
(
α−k(n−1)−β−k(n−1)

α−β

))
= (−B)−k

(
α−kn+k−β−kn+k−αkβ−kn+βkα−kn−α−kn+k+β−kn+k

α−β

)
=

(
α−kβ−k

) (−αkβ−kn+βkα−kn

α−β

)
= α−kn−k−β−kn−k

α−β

= U−k(n+1),

and the conclusion follows. �
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Define the n× n tridiagonal Toeplitz matrix En as shown below:

En =


V−k (−B)−k/2

(−B)−k/2 V−k
. . .

. . . . . . (−B)−k/2

(−B)−k/2 V−k

 .
Corollary 5. For n > 1,

detEn =
U−k(n+1)

U−k
where detE1 = U2k/Uk.

Proof. Since En = (−B)−kMn, detEn = (−B)kn detMn. By Theorem 4, the proof
follows easily. �

5. Trigonometric factorization of the General Fibonacci sequences
{Ukn} and {U−kn}

In this section, we give the trigonometric factorizations and representations of
sequences {Ukn} and {U−kn} by matrix methods and the Chebyshev polynomials
of the second kind.

Define the n× n tridiagonal matrix W as shown:

W =


0 1

1 0
. . .

. . . 1
1 0

 .
The characteristic equation of the matrix W satisfies the following recurrence

fn+1 (y) = −yfn (y)− fn−1 (y) , n > 0,

where f0 (y) = −y and f1 (y) = y2 − 1.
The Chebyshev polynomials of the second kind are defined by the recurrence

relation for n > 1
Un (x) = 2xUn−1 (x)− Un−2 (x)

where U0 (x) = 1, U1 (x) = 2x.
The zeros of the Chebyshev polynomials of the second kind is given by (see

[11, 12, 14]):
xk = cos kπ

n+1 , k = 1, 2, . . . , n,
Taking λ ≡ −2x, the sequence {fn (y)} is reduced to the sequence {Un (x)} . Then
the zeros of the characteristic equation of matrix W are given by

yk = −2 cos kπn , for k = 1, 2, . . . , n. (5.1)

By the definitions of W , Mn and En, we write Mn = VkIn + (−B)k/2W and
En = V−kIn + (−B)−k/2W where In is the n× n unit matrix.

Theorem 5. Then for n > 1,

U∓k(n+1) = U∓k

n∏
r=1

[
V∓k − 2 (−B)∓k/2 cos

(
rπ
n+1

)]
.
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Proof. Let yr, r = 1, 2, . . . , n, be the eigenvalues of matrix W with respect to the
eigenvectors xr. Then, for all r = 12, . . . , n

Mnxk =
[
VkIn + (−B)k/2W

]
xr = VkInxr+(−B)k/2Wxr =

[
Vk + (−B)k/2 yr

]
xr

Thus ωr = Vk + (−B)k/2 yr, r = 1, 2, . . . , n, are the eigenvalues of Mn. Thus by
(5.1) and Theorem 4,

detMn = Uk

n∏
r=1

[
Vk + (−B)k/2 yr

]
= Uk

n∏
r=1

[
Vk − 2 (−B)k/2 cos

(
rπ
n

)]
.

Similarly, one can obtain that cr = V−k + (−B)−k/2 yr, r = 1, 2, . . . , n, are the
eigenvalues of the matrix En. Thus we obtain

detEn = U−k

n∏
r=1

[
V−k + (−B)−k/2 yr

]
= U−k

n∏
r=1

[
V−k − 2 (−B)−k/2 cos

(
rπ
n+1

)]
.

Considering the value of detEn, the proof is complete. �

For example, when k = 5, A = 1, B = 1 in sequence {Un (A,B)} , then

F5(n+1) = 5
n∏
r=1

[
11− 2i cos

(
rπ
n+1

)]
.

Corollary 6. For an arbitrary positive integer k and n > 1 even,

U∓k(n+1) = U∓k

bn/2c∏
r=1

[
V 2
∓k − 4 (−B)∓k cos2

(
rπ
n+1

)]
and for n > 1 odd

U∓k(n+1) = U∓2k

bn/2c∏
k=1

[
V 2
∓k − 4 (−B)∓k cos2

(
rπ
n+1

)]
.

Proof. The proof follows from Theorem 5, since, for 1 ≤ k < n/2, cos (kπ/n) =
− cos ((n− k)π/n) and UnVn = U2n. �

Theorem 6. For k ≥ 1 and n > 1,

U∓k(n+1) = U∓k
(−B)∓kn/2 sin

[
(n+1) cos−1

(
V∓k

2(−B)∓k/2

)]
sin

(
cos−1

(
V∓k

2(−B)∓k/2

)) .

Proof. Let the matrix Kn be defined by

Kn (x) =


2x 1 0

1 2x
. . .

. . . . . . 1
0 1 2x


n×n

. (5.2)

It is known that detKn (x) = Un (x), where {Un (x)} is the sequence of the Cheby-
shev polynomials of the second kind. Thus we obtain

detMn = Uk (A,B) (−B)kn/2 detKn

(
Vk(A,B)

2(−B)k/2

)
= (−B)kn/2 Un

(
Vk(A,B)

2(−B)k/2

)
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If x = cos θ, the Chebyshev polynomials of the second kind can be written as (see
[12])

Un (x) = sin[(n+1)θ]
sin θ . (5.3)

Then by (5.3) and the value of the determinant of the matrix Mn, we obtain

Uk(n+1) (A,B) =
Uk(A,B)(−B)kn/2 sin

[
(n+1) cos−1

(
Vk(A,B)

2(−B)k/2

)]
sin

(
cos−1

(
Vk(A,B)

2(−B)k/2

)) .

From

detEn = (−B)−kn/2 detKn

(
V−k

2(−B)−k/2

)
= (−B)−kn/2 Un

(
V−k

2(−B)−k/2

)
and the values of the determinants of matrices En and Kn (x), we obtain the con-
clusion. �

6. Generating Functions

In this section, we give combinatorial representations and generating functions
for the terms of sequences {Vkn} and {V−kn}, thus generalizing in one direction
some results of [13].

Theorem 7. For an arbitrary positive integer k and n > 0,

V∓kn =
bn/2c∑
r=0

n

n− r

(
n− r
r

)
V n−2r
∓k B∓kr

U∓k(n+1) = U∓k

bn/2c∑
r=0

(
n− r
r

)
V n−2r
∓k B∓kr

Proof. We leave the proof of this theorem to the reader. �

Generating functions are useful tools for solving linear homogeneous recurrence
relations with constant coefficients (for more details about generating functions of
recurrence relations see [18]). Now we give the generating functions for any power
of the sequences {Vkn} and {V−kn}, generalizing known identities.

Theorem 8. Let {Vn} be the generalized Lucas sequence.

(a) If r is odd, then

∞∑
n=0

V r±knx
n =

(r−1)/2∑
i=0

(
r

i

)
2− (−B)kiV±k(r−2i)x

1− (−B)kiV±k(r−2i)x+ (−B)±kr x2
.

(b) If r is even, then

∞∑
n=0

V r±knx
n =

r/2−1∑
i=0

(
r

i

)
2− (−B)kiV±k(r−2i)x

1− (−B)kiV±k(r−2i)x+ (−B)±kr x2

+
(
r

r/2

)
1

1− (−B)±kr/2x
.
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Proof. For easy writing, let

Gk,r (x) =
∞∑
n=0

V rknx
n.

We deal with the case r = 1 separately, as it can be handled easily by a slightly
different method from the general case. First we consider the positively subscripted
case: (

1− Vkx+ (−B)k x2
)
Gk,1 (x)

= V0 + (Vk − VkV0)x+
(
V2k − VkVk + (−B)k V0

)
x2

+ · · ·+
(
Vkn − VkVk(n−1) + (−B)k Vk(n−2)

)
xn + · · · .

Since V0 = 2 and by the recurrence relation of {Vkn} of Lemma 1 the coefficients
of xn for n > 1 are all 0. Thus(

1− Vkx+ (−B)k x2
)
Gk,1 (x) = V0 + Vk (1− V0)x

and so
∞∑
n=0

Vknx
n =

V0 + Vk (1− V0)x

1− Vkx+ (−B)k x2
.

For the negatively subscripted case, the proof for r = 1 case follows from
Lemma 2 and an argument similar to the one above.

We shall give the proof for arbitrary power r, only for positively subscripted
case, since the negatively subscripted one is similar. We write

V rkn =
(
αkn + βkn

)r
=

r∑
i=0

(
r

i

)
αkniβkn(r−i),

and so,

Gk,r(x) =
∞∑
n=0

r∑
i=0

(
r

i

)(
αkiβk(r−i)x

)n
=

r∑
i=0

(
r

i

) ∞∑
n=0

(
αkiβk(r−i)x

)n
=

r∑
i=0

(
r

i

)
1

1− αkiβk(r−i)x
.

We will deal with the case of r odd, only, since the case of r even is similar.
Thus, under r odd, using

(
r
i

)
=
(
r
r−i
)

and αβ = −B, we get

Gk,r(x) =
(r−1)/2∑
i=0

(
r

i

)(
1

1− αkiβk(r−i)x
+

1
1− αk(r−i)βkix

)

=
(r−1)/2∑
i=0

(
r

i

)
2− αk(r−i)βkix− αkiβk(r−i)x

1− αk(r−i)βkix− αkiβk(r−i)x+ (αβ)krx2

=
(r−1)/2∑
i=0

(
r

i

)
2− (−B)kiVk(r−2i)x

1− (−B)kiVk(r−2i)x+ (−B)krx2
,
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since αk(r−i)βki = (−B)kiαk(r−2i), αkiβk(r−i) = (−B)kiβk(r−2i), and αk(r−2i) +
βk(r−2i) = Vk(r−2i). �

Regarding the generalized Fibonacci sequence, we can show the following the-
orem that generalizes Theorem 1 of [13], and [8, Formulas 1 and 17 on p. 230].
Since the proof is somewhat similar to the proof of Theorem 8, we will leave it to
the interested reader.

Theorem 9. Let {Un} be the generalized Fibonacci sequence.
(a) If r is odd, then
∞∑
n=0

Ur±knx
n = δr−1

(r−1)/2∑
i=0

(−1)i
(
r

i

)
(−B)±kiUk(r−2i)x

1− (−B)±kiV±k(r−2i)x+ (−B)±krx2
.

(b) If r is even, then
∞∑
n=0

Ur±knx
n = δr

r/2−1∑
i=0

(−1)i
(
r

i

)
2− (−B)±kiV±k(r−2i)x

1− (−B)±kiV±k(r−2i)x+ (−B)±krx2

+δr(−1)r/2
(
r

r/2

)
1

1−B±kr/2x
.

There is nothing special about the arithmetic progression kn, so one can obtain
similar formulas for indices in any other arithmetic progression modulo k. We chose
this particular one, namely kn, since it is consistent with the first part of the paper,
and the results are easier to state.
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