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Abstract. We show that there are relationships between a generalized Lucas
sequence and the permanent and determinant of some Hessenberg matrices.

1. Introduction

The Fibonacci sequence, {Fn}, is defined by the recurrence relation

Fn+1 = Fn + Fn−1, n ≥ 1,

where F0 = 0, F1 = 1. The Lucas sequence, {Ln}, is defined by the recurrence
relation

Ln+1 = Ln + Ln−1, n ≥ 1,
where L0 = 2, L1 = 1.

The well-known Fibonacci and Lucas numbers can be generalized as follows: Let
A be nonzero real number. Define the generalized Fibonacci sequence, {un}, and
the generalized Lucas sequence, {vn}, by

un+1 = Aun + un−1, n ≥ 1, (1.1)

vn+1 = Avn + vn−1, n ≥ 1, (1.2)
where u0 = 0, u1 = 1 and v0 = 2, v1 = A (see [1, 6, 25]). If A = 1, then un = Fn

(the nth Fibonacci number). If A = 2, then un = Pn (the nth Pell number). If
A = 1, then vn = Ln (the nth Lucas number). For later use we note that u2 = A,
u3 = A2 + 1, u4 = A3 + 2A, v2 = A2 + 2, v3 = A3 + 3A and v4 = A4 + 4A2 + 2.
The sequences {un} and {vn} may also be referred to as the Fibonacci and Lucas
polynomial sequences.

Let the roots of the equation t2 −At− 1 = 0 be σ and γ. Then for n ≥ 0

un =
σn − γn

σ − γ
and vn = σn + γn.

The sequences {un} and {vn} have been studied by several authors (see [1, 6]).
The following identities can be found in [1] and [6]:

un+1 =
�n/2�∑
k=0

(
n− k

k

)
An−2k, n ≥ 0, (1.3)

vn =
�n/2�∑
k=0

n

n− k

(
n− k

k

)
An−2k, n ≥ 1. (1.4)
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The permanent of an n-square matrix A = (aij) is defined by

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where the summation extends over all permutations σ of the symmetric group Sn.
Also one can find applications of permanents in [24].

The permanent of a matrix is analogous to the determinant, where all of the
signs used in the Laplace expansion of minors are positive.

There are many connections between permanents or determinants of tridiagonal
matrices and the Fibonacci and Lucas numbers. For example, Minc [23] defines
an n × n super-diagonal (0, 1)-matrix F (n, k) for n + 1 ≥ k, and shows that the
permanent of F (n, k) equals a generalized kth order Fibonacci number. Note that
when k = 2, the matrix F (n, 2) reduces to a tridiagonal matrix and its permanent
equals a usual Fibonacci number. Also in [26] and [27], the authors define a family
of tridiagonal matrices M(n) and show that the determinants of M(n) are the
Fibonacci numbers F2n+2. In [5] and [4], a family of tridiagonal matrices H(n)
is defined and the authors show that the determinants of H(n) are the Fibonacci
numbers Fn. In a similar family of matrices, the (1, 1) element of H(n) is replaced
with a 3. The determinants, [3], now generate the Lucas numbers Ln. Recently, in
[13], the authors defined two tridiagonal matrices and then gave the relationships
of the permanents and determinants of these matrices and the second order linear
recurrences (1.1) and (1.2). In [20], Lehmer discussed the relationships between
permanents of tridiagonal matrices, recurrence relations, and continued fractions.

In [15], the authors present a result involving the permanent of a (−1, 0, 1)-
matrix and the Fibonacci number Fn+1. The authors then explore similar directions
involving the positive subscripted Fibonacci and Lucas numbers as well as their
negatively subscripted counterparts. Finally the authors explore the generalized
kth order Lucas numbers, (see [28] and [14] for further details on the generalized
Fibonacci and Lucas numbers), and their permanents.

In [18] and [19], the authors defined two (0, 1)-matrices and then showed that
the permanents of these matrices are the generalized Fibonacci and Lucas numbers.
In particular, one of these (0, 1)-matrices is the n× n super-diagonal (0, 1)-matrix
F (n, k). Therefore, the result of Minc, [23], and the result of Lee, [18], on the
generalized Fibonacci numbers are the same because they use the same matrix.
However, Lee proved the same result by a different method, contraction method for
the permanent (for further details of the contraction method see [2]).

In [11], the authors defined two (0, 1)-matrices and then showed the relations
involving the sums of the Fibonacci and Lucas numbers, and the permanents of
these matrices. In [12], the authors defined two (0, 1)-matrices and then showed
the relations involving the sums of the generalized kth order Fibonacci and Lucas
numbers, and the permanents of these matrices.

In [16] the authors show that the permanents of certain generalized doubly sto-
chastic matrices satisfy a second order linear recurrence.
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For n ≥ 2, a lower Hessenberg matrix, An = (aij), is an n × n matrix, where
aij = 0, whenever j > i + 1, and aj,j+1 �= 0 for some j. Clearly,

An =




a11 a12 0 . . . 0

a21 a22 a23
. . . 0

a31 a32 a33
. . . 0

...
...

. . . . . . an−1,n

an1 an2 . . . an,n−1 an,n



.

In [5] the authors give the following determinant formula for An: for n ≥ 2,

detAn = an,n detAn−1 +
n−1∑
r=1

(
(−1)n−ran,r

n−1∏
j=r

aj,j+1 detAr−1

)
,

where A0 = 1 and A1 = a11.
Furthermore, the authors consider the Fibonacci sequence, {Fn}, and then define

an n× n lower Hessenberg matrix Dn and then state that the determinants of the
first few matrices are detD1 = 2, detD2 = 3 and detD3 = 5, and, it turns out that
this sequence is precisely {Fn} starting at n = 3.

In [17], we define some Hessenberg matrices. Then we show that the determi-
nants or permanents of these matrices are equal to the terms un, u2n+1 and u2n.
In [17], the following results can be found: Let the n×n lower Hessenberg matrices
Hn and Tn be defined as

Hn =




A2 + 1 1 0 . . . 0 0

1 A2 + 1 1 . . .
... 0

1 1 A2 + 1
. . . 0

...
...

...
. . . . . . 1 0

1 1 . . . 1 A2 + 1 1
1 1 1 . . . 1 A2 + 1




(1.5)

and

Tn =




A2 + 1 1 0 . . . 0 0

1 A2 + 1 1 . . .
... 0

1 1 A2 + 1
. . . 0

...
...

...
. . . . . . 1 0

1 1 . . . 1 A2 + 1 1
1 1 1 . . . 1 1



. (1.6)
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Then detHn = An−1un+2 for n ≥ 1 and detTn = A2 detHn−2 for n ≥ 3. Let the
n× n lower Hessenberg matrices Wn and Rn be defined as

Wn =




A2 + 1 −1 0 . . . 0 0

A2 A2 + 1 −1 . . .
... 0

A2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

A2 A2 . . . A2 A2 + 1 −1
A2 A2 A2 . . . A2 A2 + 1



, (1.7)

where n ≥ 1, and

Rn =




A2 −1 0 . . . 0 0

A2 A2 + 1 −1 . . .
... 0

A2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

A2 A2 . . . A2 A2 + 1 −1
A2 A2 A2 . . . A2 A2 + 1



, (1.8)

where n ≥ 2, and R1 = [A2]. Then detWn = u2n+1 and detRn = Au2n for n ≥ 1.
We note that using the definitions of the sequences {un} and {vn}, we have the

following result without proof:

un+2 + un = vn+1, n ≥ 0. (1.9)

In this paper, we consider relationships between certain Hessenberg determinants
or permanents, and the generalized Lucas sequence {vn}.

2. On The Generalized Lucas Sequence By Hessenberg Matrices

Let n ≥ 1. We define the n × n lower Hessenberg matrix Qn = (qij) with
q11 = A3 + 3, qii = A2 + 1 for 2 ≤ i ≤ n, qi,i+1 = 1 for 1 ≤ i ≤ n − 1, qij = 1 for
i > j and qij = 0 otherwise. Clearly, for n ≥ 2,

Qn =




A2 + 3 1 0 . . . 0 0

1 A2 + 1 1 . . .
... 0

1 1 A2 + 1
. . . 0

...
...

...
. . . . . . 1 0

1 1 . . . 1 A2 + 1 1
1 1 1 . . . 1 A2 + 1



. (2.1)

In addition, Q1 = [A2 + 3].

Theorem 1. Suppose that the n×n lower Hessenberg matrix Qn has the form (2.1).
Then for n ≥ 1

detQn = An−2vn+2.



ON THE GENERALIZED LUCAS SEQUENCE 5

Proof. The case n = 1 is trivial. Let n ≥ 2. Writing the first row [A2+3, 1, 0, . . . , 0]
as [A2 + 1, 1, 0, . . . , 0] + [2, 0, 0, . . . , 0] we obtain

detQn = detHn + 2detHn−1

= An−1un+2 + 2An−2un+1

= An−2(Aun+2 + un+1 + un+1)

= An−2(un+3 + un+1).

Thus from (1.9), we obtain Theorem 1. �

For example, if A = 1, then by Theorem 1 we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 1 0 0 . . . 0 0
1 2 1 0 . . . 0 0

1 1 2 1
. . .

... 0
...

. . . . . . . . . 0
...

1 1 . . . 1 2 1 0
1 1 1 . . . 1 2 1
1 1 1 1 . . . 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= Ln+2,

where Ln is the nth Lucas number.
A matrix A is called convertible if there is an n× n (1,−1)-matrix H such that

perA = det(A◦H), where A◦H denotes the Hadamard product of A and H. Such
a matrix H is called a converter of A.

Let S be the (1,−1)-matrix of order n defined by

S =




1 −1 1 . . . 1 1
1 1 −1 . . . 1 1
...

...
...

...
...

1 1 1 . . . −1 1
1 1 1 . . . 1 −1
1 1 1 . . . 1 1



.

We denote the matrix Qn ◦ S by Dn. That is,

Dn =




A2 + 3 −1 0 . . . 0 0

1 A2 + 1 −1 . . .
... 0

1 1 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

1 1 . . . 1 A2 + 1 −1
1 1 1 . . . 1 A2 + 1



. (2.2)

Then we have the following theorem without proof.

Theorem 2. Suppose that the n×n lower Hessenberg matrix Dn has the form (2.2).
Then for n ≥ 1

perDn = An−2vn+2.

Let {xn} be any second order linear recurrence sequence. Denote

xn+1 = Axn + Bxn−1, n ≥ 1,
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with x0 = C, x1 = D. Then, for n ≥ 0,

xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C D 0 0 . . . 0 0
−1 0 B 0 . . . 0 0
0 −1 A B . . . 0 0

0 0 −1 A
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . A B
0 0 0 0 . . . −1 A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

. (2.3)

In particular,

vn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 A 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 A 1 . . . 0 0

0 0 −1 A
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . A 1
0 0 0 0 . . . −1 A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

These two matrices are tridiagonal and thus also Hessenberg matrices. Note that
Qn’s are nonnegative Hessenberg matrices whose determinants generate the gener-
alized Lucas sequence {vn}.

3. On the terms v2n+1 and v2n

In this section, we define two lower Hessenberg matrices and show that their
determinants are equal to the terms v2n+1 and v2n.

We define the n × n lower Hessenberg matrix En = (eij) with e11 = A2 + 3,
eii = A2 + 1 for 2 ≤ i ≤ n, ei,i+1 = −1 for 1 ≤ i ≤ n − 1, eij = A2 for 3 ≤ i ≤ n,
2 ≤ j ≤ i− 1, ei1 = A2 + 2 for 2 ≤ i ≤ n and eij = 0 otherwise. That is, for n ≥ 2,

En =




A2 + 3 −1 0 . . . 0 0

A2 + 2 A2 + 1 −1 . . .
... 0

A2 + 2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

A2 + 2 A2 . . . A2 A2 + 1 −1
A2 + 2 A2 A2 . . . A2 A2 + 1



. (3.1)

In addition, E1 = [A2 + 3].

Theorem 3. Suppose that the n×n lower Hessenberg matrix En has the form (3.1).
Then for n ≥ 1

detEn =
v2n+1

A
.
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Proof. (Induction on n.) If n = 1 or n = 2, then we have

detE1 = A2 + 3 =
v3

A
,

detE2 =
∣∣∣∣A

2 + 3 −1
A2 + 2 A2 + 1

∣∣∣∣ = A4 + 5A2 + 5 =
v5

A
.

Assume that Theorem 3 holds for n < k (k ≥ 3). Consider the case n = k. We
expand detEk with respect to the last column to obtain

detEk = (A2 + 1) detEk−1 + detE′
k−1,

where

detE′
k−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A2 + 3 −1 0 . . . 0 0

A2 + 2 A2 + 1 −1
. . . 0 0

A2 + 2 A2 A2 + 1
. . . 0 0

...
...

. . . . . . . . . . . .

A2 + 2 A2 A2 . . . A2 + 1 −1
A2 A2 A2 . . . A2 A2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)

.

Writing the last column [0, 0, . . . , 0,−1, A2]T of detE′
k−1 as [0, 0, . . . , 0,−1, A2 +

1]T + [0, 0, . . . , 0, 0,−1]T we obtain

detE′
k−1 = detEk−1 − detEk−2.

Thus
detEk = (A2 + 2) detEk−1 − detEk−2. (3.2)

We apply the induction assumption to obtain

detEk = (A2 + 2)
v2k−1

A
− v2k−3

A
.

Thus

detEk =
1
A

(A2v2k−1 + v2k−1 + v2k−1 − v2k−3)

=
1
A

(A2v2k−1 + v2k−1 + Av2k−2)

=
1
A

(Av2k + v2k−1) =
v2k+1

A
.

Thus completes the induction. �

Equation (3.2) shows that the sequence {αn}∞n=0 ≡ {v2n+1}∞n=0 is a second order
linear recurrence sequence. In fact,

αn = (A2 + 2)αn−1 − αn−2, n ≥ 2,

with α0 = A, α1 = A3 + 3A. Thus {αn} or {v2n+1} is also generated by deter-
minants of tridiagonal matrices of type (2.3) and respective permanents. For the
sake of brevity we do not present these determinants and permanents here. Note
that the matrix Mn in (3.5) is a nonnegative Hessenberg matrix whose permanents
generate the sequence {v2n+1}.

It can be shown that the matrix Wn given in (1.7) also satisfies (3.2). Thus the
sequence {u2n+1}∞n=0 is a second order linear recurrence sequence.
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For n ≥ 3, let

Xn =




A2 −1 0 . . . 0 0

A2 A2 + 1 −1 . . .
... 0

A2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

A2 A2 . . . A2 A2 + 1 −1
A2 A2 A2 . . . A2 A2 + 2



n×n

. (3.3)

In addition,

X1 = [A2], X2 =
[
A2 −1
A2 A2 + 2

]
.

Theorem 4. Suppose that the n×n lower Hessenberg matrix Xn has the form (3.3).
Then for n ≥ 1

detXn = Av2n−1.

Proof. If n = 1, then Theorem 4 holds. Let n ≥ 2. We write the last row
[A2, A2, . . . , A2, A2 + 2] of Xn as [A2, A2, . . . , A2, A2 + 1] + [0, 0, . . . , 0, 1] to obtain

detXn = detRn + detRn−1 = Au2n + Au2n−2.

From (1.9) we obtain Theorem 4. �

Now, we give a relationship between the term v2n and a Hessenberg matrix.
For this purpose, we define the n × n lower Hessenberg matrix Zn = (zij) with
z11 = A2 + 2, zii = A2 + 1 for 2 ≤ i ≤ n, zi,i+1 = −1 for 1 ≤ i ≤ n − 1, zij = A2

for i > j and zij = 0 otherwise. That is, for n ≥ 2,

Zn =




A2 + 2 −1 0 . . . 0 0

A2 A2 + 1 −1 . . .
... 0

A2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . −1 0

A2 A2 . . . A2 A2 + 1 −1
A2 A2 A2 . . . A2 A2 + 1



. (3.4)

In addition, Z1 = [A2 + 2].

Theorem 5. Suppose that the n×n lower Hessenberg matrix Zn has the form (3.4).
Then for n ≥ 1

detZn = v2n.

Proof. If n = 1, then Theorem 5 holds. Let n ≥ 2. We write the first row [A2 + 2,
−1, 0, . . . , 0] of Zn as [A2 + 1,−1, 0, . . . , 0] + [1, 0, 0, . . . , 0] to obtain

detZn = detWn + detWn−1 = u2n+1 + u2n−1.

From (1.9) we obtain Theorem 5. �

Theorem 5 can also be proven in a way similar to the proof of Theorem 3 to
obtain

detZn = (A2 + 2) detZn−1 − detZn−2.
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Thus the sequence {βn}∞n=0 ≡ {v2n}∞n=0 is a second order linear recurrence se-
quence. In fact,

βn = (A2 + 2)βn−1 − βn−2, n ≥ 2,
with β0 = 2, β1 = A2 + 2. Thus {βn} or {v2n} is also generated by determinants
of tridiagonal matrices of type (2.3) and respective permanents. For the sake of
brevity we do not present these determinants and permanents here. Note that the
matrix Yn in (3.6) is a nonnegative Hessenberg matrix whose permanents generate
the sequence {v2n}.

It can be shown that the matrix Rn given in (1.8) also satisfies (3.2). Thus the
sequence {u2n}∞n=0 is a second order linear recurrence sequence.

Let the n× n (1,−1)-matrix S be as before and denote the matrices En ◦ S and
Zn ◦ S by Mn and Yn, respectively. Clearly

Mn =




A2 + 3 1 0 . . . 0 0

A2 + 2 A2 + 1 1 . . .
... 0

A2 + 2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . 1 0

A2 + 2 A2 . . . A2 A2 + 1 1
A2 + 2 A2 A2 . . . A2 A2 + 1




(3.5)

and

Yn =




A2 + 2 1 0 . . . 0 0

A2 A2 + 1 1 . . .
... 0

A2 A2 A2 + 1
. . . 0

...
...

...
. . . . . . 1 0

A2 A2 . . . A2 A2 + 1 1
A2 A2 A2 . . . A2 A2



. (3.6)

Then we have the following theorems without proof.

Theorem 6. Suppose that the n×n lower Hessenberg matrix Mn has the form (3.5).
Then for n ≥ 1

perMn =
v2n+1

A
.

Theorem 7. Suppose that the n×n lower Hessenberg matrix Yn has the form (3.6).
Then for n ≥ 1

perYn = v2n.

Considering the identity (1.4), we can give the following results:

detQn−2 = perDn−2 =
�n/2�∑
k=0

n

n− k

(
n− k

k

)
A2n−2k−4 for n ≥ 3, (3.7)

detEn = perMn =
� 2n+1

2 �∑
k=0

2n + 1
2n− k + 1

(
2n− k + 1

k

)
A2n−2k for n ≥ 1 (3.8)

and

detZn = perYn =
n∑

k=0

2n
2n− k

(
2n− k

k

)
A2n−2k for n ≥ 1. (3.9)
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Similar results hold also for detXn and per(Xn ◦ S). Further matrices possessing
properties similar to Theorems 1–7 and formulas (3.7)–(3.9) can be derived applying
various determinant rules. For example,

v2n+1 = A−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0

0 A2 −1
. . . 0 0

A2 A2 A2 + 1
. . . 0 0

...
...

. . . . . .
...

...
A2 A2 A2 . . . A2 + 1 −1
A2 A2 A2 . . . A2 A2 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+2)×(n+2)

.

This formula follows from expanding the determinant with respect to the first row.
Further binomial formulas can be found from [9, 25].

In this paper we have provided connections between recurrence sequences and
determinants and permanents of Hessenberg matrices and also certain binomial
sums. Connections to other objects in mathematics can also be found, e.g. to pow-
ers of matrices, continued fractions, generating functions and rational arithmetical
functions, see [7, 8, 9, 10, 20, 21, 22, 25].
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