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Abstract

This paper considers the Lehmer matrix and its recursive
analogue. The determinant of Lehmer matrix is derived ex-
plicitly by both its LU and Cholesky factorizations. We fur-
ther define a generalized Lehmer matrix with (i, j) entries

gij =
min {ui+1, uj+1}
max {ui+1, uj+1}

where un is the nth term of a binary

sequence {un} . We derive both the LU and Cholesky factor-
izations of this analogous matrix and we precisely compute the
determinant.

1 Introduction

D.H. Lehmer (see [2]) constructed an n × n symmetric matrix A =
(aij)i,j whose (i, j) entry is

aij =
min {i, j}
max {i, j}

=
{

i/j j ≥ i,
j/i i > j.

Define the second order recurrence {Un (p, q)} as follows:

Un (p, q) = pUn−1 (p, q)− qUn−2 (p, q) ,
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where U0 (p, q) = 0 and U1 (p, q) = 1 for n > 1.

As an interesting example, we mention that the set of natural
numbers can be obtained from the sequence {Un (p, q)} by taking
p = 2, q = 1. Throughout this paper, we consider the case q = −1
and we denote un = Un (p,−1).

We now define an n×n generalized Lehmer matrix, namely Fn =
(gij)1≤i,j≤n defined below:

gij =
min {ui+1, uj+1}
max {ui+1, uj+1}

=


ui+1

uj+1
if j ≥ i,

uj+1

ui+1
if i > j.

where un is the nth term of the sequence {un} . In this paper, we
obtain the general LU factorization and other explicit formulas for
both the Lehmer matrix and its recursive analogue.

The Lehmer matrix is part of a family of matrices known as
test matrices, which are used to evaluate the accuracy of matrix
inversion programs since the exact inverses are known (see [1, 2]). It
is hoped that our generalized Lehmer matrix will add to the literature
of special matrices with known inverse.

2 The Lehmer Matrix

We start by obtaining the LU factorization of the Lehmer matrix
A. Using the inverses of L and U , we obtain the explicit form for
the inverse of A, whose inverse is well-known, thus obtaining another
proof of this result.

We define the n × n invertible lower triangular matrix L = (`ij)
where `ij = j/i for i ≥ j and 0 otherwise. Next, we define the n× n
invertible upper triangular matrix U = (uij) with uij = 2i−1

ij for



i ≤ j and 0 otherwise. For example, when n = 5, we get

L =



1 0 0 0 0
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1
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1
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and U =
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.

The following result holds.

Theorem 1. For n > 0, the LU factorization of Lehmer matrix is
given by

A = LU

where L and U were defined previously.

Proof. We split the proof into three cases.
Case 1: i = j. By

∑t
k=1 (2k − 1) = t2, then

aii =
n∑

k=1

`ikuki =
i∑

k=1

`ikuki =
i∑

k=1

k

i

(2k − 1)
k.i

=
i∑

k=1

2k − 1
i2

= 1.

Case 2: i > j. Thus

aij =
n∑

k=1

`ikukj =
j∑

k=1

`ikukj =
j∑

k=1

k

i

(2k − 1)
kj

=
j∑

k=1

2k − 1
ij

=
1
ij

j∑
k=1

2k − 1 =
j

i
.

Case 3: j > i. Then

aij =
n∑

k=1

`ikukj =
i∑

k=1

`ikukj =
i∑

k=1

k

i

(2k − 1)
kj

=
i∑

k=1

2k − 1
ij

=
1
ij

i∑
k=1

2k − 1 =
i

j
,



which completes the proof.

We display an example below:
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=



1 0 0 0 0
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2 1 0 0 0
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.

As a consequence of Theorem 1, we obtain an explicit value of
the determinant of the Lehmer matrix in the following corollary.

Corollary 1. For n > 0,

det A =
(2n)!

2n (n!)3

Proof. The proof follows from the LU factorization of matrix A by
considering det A = det U =

∏n
i=1

2i−1
i2

.

The nth Catalan number is given in terms of binomial coefficients
by

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
(n + 1)!n!

.

Thus we may note that

det A =
(n + 1)

2nn!
Cn.

We continue our analysis by determining the L1L
T
1 (named after

Cholesky) factorization of the Lehmer matrix, where L1 is a lower
triangular matrix. The Cholesky factorization was obtained for a
different kind of matrix defined using binary sequences by the second
author in [3].



Theorem 2. The Cholesky factorization of the Lehmer matrix is
given by

A = L1L
T
1

where L1 = (fij) is a lower triangular matrix with fij =
√

2j−1
i for

all i ≥ j.

Proof. If i > j, then

aij =
n∑

r=1

firfjr =
j∑

r=1

firfjr =
j∑

r=1

√
2r − 1

i

√
2r − 1

j

=
1
ij

j∑
r=1

(2r − 1) =
j

i
.

If i = j, then

aii =
n∑

r=1

f2
ir =

i∑
r=1

f2
ir =

i∑
r=1

(√
2r − 1

i

)2

=
1
i2

i∑
r=1

(2r − 1) =
i2

i2
= 1.

Finally, if i < j, then

aij =
n∑

r=1

firfjr =
i∑

r=1

firfjr =
1
ij

i∑
r=1

(2r − 1) =
i

j
,

which proves the theorem.

As an example, for n = 5 and p = 1 (the Fibonacci sequence
case), we have
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.



By Theorem 2, we find that, since A = L1L
T
1 , we have that

det (A) =
∏n

i=1 f2
ii =

∏n
t=1

2i−1
i2

= (2n)!

2n(n!)3
, that is, Corollary 1.

3 The Inverse of the Lehmer Matrix

Now we find an explicit formula for the inverse of the Lehmer matrix.
For this purpose, we use its LU factorization as A−1 = U−1L−1. We
first derive the inverses of the matrices L and U.

Lemma 1. Let L−1 = (tij) denote the inverse of L. Then

tij =


1 if i = j,

− j
i if i = j + 1,
0 otherwise,

Proof. The proof can be easily checked from the product L−1L.

Lemma 2. Let U−1 = (wij) denote the inverse of U. Then

wij =


i2

2i−1 if i = j

− i(i+1)
2i+1 if i + 1 = j,

0 otherwise,

Proof. The proof follows from the product U−1U.

The inverse of the Lehmer matrix is found in the following theo-
rem.

Theorem 3. For n > 0, let A−1 = (bij), then

bij =


4i3

4i2−1
if i = j < n

n2

2n−1 if i = j = n,

− i(i+1)
2i+1 if |i− j| = 1,

0 otherwise,



Proof. Since A−1 = U−1L−1, using the previous two lemmas, we
obtain for 1 ≤ i ≤ n− 1,

bii =
n∑

k=1

wiktki = wii + wi,i+1ti+1,i

=
i2

2i− 1
+

i (i + 1)
2i + 1

i

(i + 1)
=

i2

2i− 1
+

i2

2i + 1
=

4i3

4i2 − 1
.

When i = j = n, it is easy to see that bnn = wnn = n2

2n−1 . If
i = j + 1, then

bi+1,i =
n∑

k=1

wi+1,ktki = wi+1,i+1ti+1,i

=
(i + 1)2

2i + 1

(
−i

i + 1

)
= − i (i + 1)

2i + 1
.

The last case j = i + 1 can be similarly done, and the proof is
complete.

Therefore we recover the known fact that the inverse of the Lehmer
matrix is a symmetric tridiagonal matrix.

We give the following example as a consequence of the above
theorem: for n = 4,

A−1 =



4
3 −2

3 0 0

−2
3

32
15 −6

5 0

0 −6
5

108
35 −12

7

0 0 −12
7

16
7



=



1 −2
3 0 0

0 4
3 −6

5 0

0 0 9
5 −12

7

0 0 0 16
7





1 0 0 0

−1
2 1 0 0

0 −2
3 1 0

0 0 −3
4 1





We also give a relation between the terms of inverse of the Lehmer
matrix and triangular numbers. Recall that the nth triangular num-
ber Tn is defined as the sum of the first n natural numbers, that
is, Tn = 1 + 2 + · · · + n = n(n+1)

2 . We can re-write A−1 = (bij) as
bij = − 2Ti

2i+1 for |i− j| = 1, and bii = 4i3

4i2−1
.

4 Recursive Analogue of the Lehmer Matrix

In this section we investigate the same questions for our general-
ized recursive analogue of the Lehmer matrix Fn defined in the first
section, namely, Fn = (gij):

gij =
min {ui+1, uj+1}
max {ui+1, uj+1}

=


ui+1

uj+1
if j ≥ i,

uj+1

ui+1
if i > j.

where un is the nth term of the sequence {un} .

For example, when n = 5 and p = 1, the matrix F5 takes the
following form:

F5 =



1 u2
u3

u2
u4

u2
u5

u2
u6

u2
u3

1 u3
u4

u3
u5

u3
u6

u2
u4

u3
u4

1 u4
u5

u4
u6

u2
u5

u3
u5

u4
u5

1 u5
u6

u2
u6

u3
u6

u4
u6

u5
u6

1


.

In order to give the LU factorization of the matrix Fn, we define
two triangular matrices.

Define the n × n unit lower triangular matrix L2 = (cij) with
cij = uj+1

ui+1
for all i ≥ j and uij = 0 for all i < j.



For example, when n = 5, the matrix takes the form:

L2 =



1 0 0 0 0

u2
u3

1 0 0 0

u2
u4

u3
u4

1 0 0

u2
u5

u3
u5

u4
u5

1 0

u2
u6

u3
u6

u4
u6

u5
u6

1


.

Before defining an upper triangular matrix for the LU factorization
of the matrix Fn, we need to introduce a new sequence {tn} by the
following relation:

tn = (p− 1) un + un−1, that is, tn = un+1 − un, n > 1,

where un is defined as before.

Define the n × n upper triangular matrix U2 = (dij) with d1j =
u2

uj+1
for 1 ≤ j ≤ n, dij = (ui+ui+1)ti

ui+1uj+1
for 1 < i ≤ j ≤ n.

From the definition of the sequence {tn} , we rewrite the matrix

U2 with d1j = u2
uj+1

for 1 ≤ j ≤ n, dij =
u2

i+1−u2
i

ui+1uj+1
for 1 < i ≤ j ≤ n.

For example, when n = 4, the matrix takes the form:

U2 =



1 u2
u3

u2
u4

u2
u5

u2
u6

0 u2
3−u2

2

u2
3

u2
3−u2

2
u3u4

u2
3−u2

2
u3u5

u2
3−u2

2
u3u6

0 0 u2
4−u2

3

u2
4

u2
4−u2

3
u4u5

u2
4−u2

3
u4u6

0 0 0 u2
5−u2

4

u2
5

u2
5−u2

4
u5u6

0 0 0 0 u2
6−u2

5

u2
6


.

Theorem 4. For n > 0, the factorization of matrix Fn = (gij) is
given by

Fn = L2U2,



where U2 and L2 were defined previously.

Proof. Let L2U2 = (hij) .We consider two cases, i > j and i ≤ j. For
the first case, we write

hij =
n∑

m=1

cimdmj =
j∑

m=1

cimdmj

= ci1d1j +
j∑

m=2

(
um+1

ui+1

(
u2

m+1 − u2
m

)
um+1uj+1

)

=
u2

2

ui+1uj+1
+

1
ui+1uj+1

j∑
m=2

(
u2

m+1 − u2
m

)
=

u2
2

ui+1uj+1
+

1
ui+1uj+1

(
u2

j+1 − u2
2

)
=

uj+1

ui+1
= gij .

If i ≤ j, then similarly

hij =
n∑

m=1

cimdmj =
i∑

m=1

cimdmj

= ci1d1j +
i∑

m=2

(
um+1

ui+1

(
u2

m+1 − u2
m

)
um+1uj+1

)

=
u2

2

ui+1uj+1
+

1
ui+1uj+1

i∑
m=2

(
u2

m+1 − u2
m

)
=

ui+1

uj+1
= gij ,

and the claim is shown.

Now we can find the value of det (Fn) by considering its LU
factorization.

Corollary 2. For n > 0,

det (Fn) =
n∏

i=2

(
u2

i+1 − u2
i

u2
i+1

)
.



As a special cases of the matrix Fn, we take the matrix F0
n ob-

tained using the Fibonacci sequence, that is, Fn+1 = Fn+Fn−1, F0 =
0, F1 = 1. The determinant of this matrix becomes

det
(
F0

n

)
=

Fn−1!Fn+2!
2 (Fn+1!)2

,

where Fn! is the Fibonomial factorial, that is, Fn! = F1F2 · · ·Fn.

Next we give the Cholesky factorization of the generalized Lehmer
matrix Fn. For this purpose we define a lower triangular matrix L3 =
(mij) with mi,1 = u2

ui+1
for 1 ≤ i ≤ n, mij = 1

ui+1

√
u2

j+1 − u2
j for

1 < j ≤ i ≤ n and 0 otherwise.

When n = 4, the matrix L3 takes the form:

L3 =


1 0 0 0
u2
u3

1
u3

√
u2

3 − u2
2 0 0

u2
u4

1
u4

√
u2

3 − u2
2

1
u4

√
u2

4 − u2
3 0

u2
u5

1
u5

√
u2

3 − u2
2

1
u5

√
u2

4 − u2
3

1
u5

√
u2

5 − u2
4

 .

The proof of the next theorem is analogous to the proof of The-
orem 4, so it will be omitted.

Theorem 5. The Cholesky factorization of the recursive analogue
of the Lehmer matrix is given by

Fn = L3L
T
3

where L3 is the lower triangular matrix defined previously.

5 The Inverse of the Generalized Lehmer Ma-
trix

Here we give the inverse of the recursive analogue of the Lehmer
matrix F−1

n by considering its LU factorization. Before this, we give
the inverses of the matrices L2 and U2 in the following lemmas, stated
without proofs, as they are immediate.



Lemma 3. Let U−1
2 = (ŵij) denote the inverse of U2. Then

ŵij =


1 if i = j = 1

− u2
i+1

u2
i−u2

i+1
if 1 < i = j,

ui+1ui+2

u2
i+1−u2

i+2
if i + 1 = j,

0 otherwise,

Lemma 4. Let L−1
2 =

(
t̂ij
)

denote the inverse of L. Then

t̂ij =


1 if i = j,

− ui
ui+1

if i = j + 1,

0 otherwise,

Thus the inverse of the matrix Fn is found in the following the-
orem.

Theorem 6. For n > 0, let F−1
n = (qij), then q11 = u2

3

u2
3−u2

2
, qnn =

u2
n+1

u2
n+1−u2

n
, qi,i+1 = qi+1,i = ui+1ui+2

u2
i+1−u2

i+2
for 1 ≤ i ≤ n − 1, qii =

u2
i+1(u2

i+2−u2
i )

(u2
i+1−u2

i )(u2
i+2−u2

i+1)
for 2 ≤ i ≤ n− 1 and 0 otherwise.

Proof. Since F−1
n = U−1

2 L−1
2 , the proof follows from the previous two

lemmas and from matrix multiplication.

For example, for n = 4,

F−1
5 =



u2
3

u2
3−u2

2

u2u3

u2
2−u2

3
0 0

u2u3

u2
2−u2

3

(
u2
3

u2
3−u2

2

)(
u2
4−u2

2

u2
4−u2

3

)
u3u4

u2
3−u2

4
0

0 u3u4

u2
3−u2

4

(
u2
4

u2
4−u2

3

)(
u2
5−u2

3

u2
5−u2

4

)
u4u5

u2
4−u2

5

0 0 u4u5

u2
4−u2

5

u2
5

u2
5−u2

4

 .

6 Further comment

With a bit more care, one can certainly remove the constraint q = −1
on the sequence Un, and prove similar results like in the present paper
for the corresponding generalized Lehmer matrix.
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