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Abstract

In this short paper we establish identities involving sums of products of binomial
coefficients and coefficients that satisfy the general second–order linear recurrence.
We obtain generalizations of identities of Carlitz, Prodinger and Haukkanen.

1 Introduction

There are many types of identities involving sums of products of binomial coefficients and
Fibonacci or Lucas numbers. For example, we recall that (see [1, 4, 12]):

n∑
k=0

(
n

k

)
Fk = F2n,

n∑
k=0

(
n

k

)
F4k = 3nF2n, (1)

n∑
k=0

(
n

k

)
2n−kF5k = 5nF2n,

n∑
k=0

(
n

k

)
3n−kF6k = 8nF2n, (2)

Furthermore many additional sums were given in [2, 8].
As more generalizations of the identities given by (1)-(2), Carlitz [1] derived the fol-

lowing nice result by ordinary generating functions: Let s, t be fixed positive integers such
that s 6= t,

λnGsn+r =

n∑
k=0

(
n

k

)
µkGtk+r (3)

if and only if

λ = (−1)s
Ft
Ft−s

and µ = (−1)s
Fs
Ft−s

(4)

where Gn is either a Fibonacci or Lucas number.
Clearly for positive integers s and t, s 6= t,

Fnt Gsn+r =
n∑
k=0

(
n

k

)
(−1)s(n−k) F ks F

n−k
t−s Gtk+r. (5)
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By using the exponential generating functions (or egf’s, see [3, 5, 6, 11]), Prodinger
[11] and Haukkanen [7] obtained the same results as Carlitz [1]. Haukkanen obtained
similar results for the Pell and Pell-Lucas numbers.

The egf of a sequence {an} is defined by

â (x) =

∞∑
n=0

an
xn

n!
.

The product of the egf’s of {an} and {bn} generates the binomial convolution of {an} and
{bn} :

â (x) b̂ (x) =
∞∑
n=0

(
n∑
k=0

(
n

k

)
an−kbk

)
xn

n!
(6)

A special case of (5) can be found in [12]. Here the author obtains this special case
by the binomial theorem.

The general recurrence {Wn (a, b; p, q)} is defined for n ≥ 2

Wn = pWn−1 − qWn−2, (7)

where W0 = a,W1 = b.
We write Wn = Wn (a, b; p, q). Let α and β be the roots of λ2 − pλ+ q = 0, assumed

distinct. The Binet form of {Wn} is as follows:

Wn = Aαn +Bβn (8)

where A = b−aβ
α−β and B = aα−b

α−β .
Define Un = Wn (0, 1; p, q) and Vn = Wn (2, p; p, q). The Binet forms of Un and Vn are

given by

Un =
αn − βn

α− β
and Vn = αn + βn

where {Un} and {Vn} are the generalized Fibonacci and Lucas-types sequences, respec-
tively.

For more details and properties related to the sequence {Wn}, we refer to [9, 10].
In this short paper, we derive generalizations of the results of [1, 11, 7] for the sequence

{Wn}. Further some new applications are also given.

2 The results for the sequence {Wn}
We recall the following result from [7]:

Lemma 1. Let λ1 and λ2 be distinct complex numbers, and let c1 and c2 be nonzero
distinct complex numbers. Then

c1e
λ1x + c2e

λ2x = c1e
µ1x + c2e

µ2x

if and only if
µ1 = λ1 and µ2 = λ2.
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Lemma 2. Let λ1 and λ2 be distinct complex numbers, and let c be a nonzero complex
number. Then

ceλ1x + ceλ2x = ceµ1x + ceµ2x

if only if either
µ1 = λ1 and µ2 = λ2 or µ1 = λ2 and µ2 = λ1.

For the sequence {Wn}, we can deduce

Ŵ (x) = Aeαx +Beβx.

Thus we have the following two cases: r 6= 0 and r = 0.

Theorem 1. Let c and d be nonzero integers and, let r be a nonzero integer. Then for
n ≥ 0

Wcn+r =
n∑
k=0

(
n

k

)
tn−kskWdk+r (9)

if and only if

s =
Uc
Ud

and t = qc
Ud−c
Ud

.

Proof. By the egf’s, (9) can be rewritten as

Aαreα
cx +Bβreβ

cx = etx
(
Aαreα

dsx +Bβreβ
dsx
)

(10)

where the right hand side comes from (6). Since αr 6= βr for r 6= 0, by Lemma 1, (10)
holds if and only if

αc = αds+ t and βc = βds+ t, (11)

and clearly,

s =
αc − βc

αd − βd
=
Uc
Ud

and t = αc − αd α
c − βc

αd − βd
= qc

Ud−c
Ud

.

Thus the proof is complete.

Theorem 2. Let c and d be nonzero integers and p = 2b/a. Then for n ≥ 0

Wcn =
n∑
k=0

(
n

k

)
tn−kskWdk (12)

if and only if either (11) holds or

s =
−Uc
Ud

and t =
Ud+c
Ud

.
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Proof. In terms of the egf’s, (12) could be rewritten as

Aeα
cx +Beβ

cx = etx
(
Aeα

dsx +Beβ
dsx
)

(13)

where the right side is seen from (6). Since p = 2b/a, A = B, thus (13) takes the form

eα
cx + eβ

cx = etx
(
eα

dsx + eβ
dsx
)
. (14)

By Lemma 2, (14) holds if and only if either (11) holds or

αc = βds+ t and βc = αds+ t,

clearly,

s =
αc − βc

βd − αd
=
−Uc
Ud

and t = αc − βd α
c − βc

βd − αd
=
Ud+c
Ud

.

Thus the proof is complete.

From Theorems 1 and 2, we have the following consequence.

Corollary 3. If c and d are nonzero integers and r is an integer, then

UndWcn+r =
n∑
k=0

(
n

k

)
qc(n−k)Un−kd−c U

k
cWdk+r.

If c and d are nonzero integers, then

UndWcn =

n∑
k=0

(
n

k

)
(−1)k Un−kd+c U

k
cWdk.

We note the following some known special cases of {Wn} :

p q a b Wn

1 −1 0 1 Fn Fibonacci numbers

1 −1 2 1 Ln Lucas numbers

2 −1 0 1 Pn Pell numbers

2 −1 2 2 2 Pell-Lucas numbers

1 −2 0 1 Jn Jacobsthal numbers

1 −2 2 1 jn Jacobsthal-Lucas numbers

Thus we have the following examples:

Fnd Fcn+r =

n∑
k=0

(
n

k

)
(−1)c(n−k) Fn−kd−c F

k
c Fdk+r

and

Fnd Lcn =
n∑
k=0

(
n

k

)
(−1)k Fn−kd+c F

k
c Ldk
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which are also given in [1, 11, 7].
Similar to the Fibonacci and Lucas numbers, for the Jacobsthal and Jacobsthal-Lucas

sequences, we obtain

Jnd Jcn+r =
n∑
k=0

(
n

k

)
(−2)c(n−k) Jn−kd−c J

k
c Jdk+r,

Jnd jcn =
n∑
k=0

(
n

k

)
(−1)k Jn−kd+c J

k
c jdk.
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