FACTORIZATIONS AND REPRESENTATIONS OF BINARY
POLYNOMIAL RECURRENCES BY MATRIX METHODS

EMRAH KILIC AND PANTELIMON STANICA

ABSTRACT. In this paper we derive factorizations and representations of a
polynomial analogue of an arbitrary binary sequence by matrix methods. It
generalizes various results on Fibonacci, Lucas, Chebyshev and Morgan—Voyce
polynomials.

1. INTRODUCTION

In [10], the divisibility properties of the Fibonacci polynomial sequence { f,, ()}
was studied. The Fibonacci polynomial sequence is defined by the recursion

f7z+2 (IE) :ijn-‘rl ($)+fn (.7,‘), fO (.73) 207 fl (.7,‘) =1

Five years later, Hoggatt and Long [2] considered the general Fibonacci type poly-
nomial sequence {u,, (z,y)} of two variables. This sequence is defined by

(1.1) Unt2 (2,Y) = BUpy1 (2, Y) + yun (T,y)

where ug (z,y) = 0 and u; (z,y) = 1.
The authors of [2, 10] found the roots of these polynomials and then obtained
the factorizations of their polynomials. In [2], the authors found that

n—1
Uup (x,y) = y=1/2 H <:1c — 2icos lmr) .
o WY "

Further, in [1], the authors use the relationships between the determinants of
certain tridiagonal matrices and the Fibonacci and Lucas numbers, and then by
matrix methods, they obtained the factorizations and representations of these se-
quences. The factorization of Fibonacci numbers was initially proposed in [6], and
the factorization of Lucas numbers was obtained in [11].

The (companion) generalized Lucas polynomial sequence vy, (z,y) is defined by

Vny2 (T,Y) = 2Un g1 (2, ) + yon (2, y)

where vg (z,y) = 2 and vy (z,y) = 1.

Recently, in [5], the binary sequential analogues of the generalized Fibonacci and
Lucas polynomial sequences was considered and factorizations and representations
of these sequences was obtained. These sequences are defined by

Un+1 = AUn + BUnfl
Vn+1 = AVn + anfl
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where Uy = 0,U; = 1 and Vp = 2,V; = A, respectively. Also, in [4], we gave the
more general factorizations of second order linear recurrences {U, } and {V,,} with
indices in arithmetic progressions. Furthermore, we obtained the factorization of
these general sequences by the matrix methods considering how these recurrences
are related to the determinants of certain tridiagonal matrices.

As it can be seen from the above mentioned results, the most general cases of
these polynomial and binary sequences have not been studied. Consequently, we
define {A,, (a,b;p,q) ()} (we shall often drop the argument (a, b;p, q) and simply
write {A4,(z)}) to be a polynomial sequence satisfying

Ans1(z) = p(2)An(7) + q(2) An—1(2),

and initial conditions Ay = a(x), Ay = b(z), where a, b, p, q are polynomials of an
indeterminate = with real coefficients. For easy notation, we shall sometimes write
An,p,yq,a,b for A, (x), p(z), ¢(x), a(z) and b(z), respectively. We display some
special cases of the sequence {A,} in the following table.

p(x) |q(z) | a(z) | blx) | An(a,b;p,q)(z) | Polynomial Type
2x —11 1 x T, (x) 1st kind Chebyshev
2x 1] 1 2z U, (z) 2nd kind Chebyshev
x+1| =1 1 x+1 by, (2) Morgan-Voyce
T y| O 1 U (z,9) generalized Fibonacci
T yl| 2 1 Up (2, 9) generalized Lucas
2z -1 1 |2z+1 W, (x) 4th kind Chebyshev
2z -1 1 |2z—-1 Vi () 3rd kind Chebyshev
Table 1

In Section 2 we present a recurrence, and define a tridiagonal matrix whose
determinant is precisely A, (a, b; p, q) (x), with n in an arithmetic progression, n = ¢
(mod k). In our main Section 3 we derive the factorization and representations
of the sequence {A, (a,b;p,q)} (under some assumptions), by matrix methods,
thus generalizing some results of [1]-[5] and others. As consequences, we obtain
the factorizations for the Chebyshev’s and generalized Lucas polynomials, among
others.

2. A RECURRENCE FOR A, (a,b;p,q) (x), WHERE n = ¢ (mod k)

We start this section with the Binet formulas of both positively and negatively
indexed terms of the sequence {A,}, namely

(21) Ay, = (b_a6> ain+ (aa_b) ﬂ:ﬁ:n

a—pf a—pf
where
_p+VPPH+4q , p—+/pP+4q

First, we prove the following lemma.
Lemma 1. For k>0, n > 0, the sequence {A,} satisfies the following recursion
(23) Ap(n+1,:i:k,c) = y:tkAp(n,:tk,c) - Z:i:kAp(n—l,:l:k,c)

where yij, = o + B 2 = ¢FF and p(n, k,c) = nk + ¢ (¢ constant).
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Proof. From the definition of the sequence {A,}, considering the case Ay = 2 and
Ay = p, we write

Yar = Asr (2,050, q) = oFF + gFF

where a and § are given by (2.2). Further, for the positive case, we note that

Y = Ay (2,p;p,9) = o + gF.

Since the positively and negatively indexed terms cases are similar, we only
consider the positively indexed terms case. By the Binet formula of the sequence
. k k
{4, } and since z, = ¢" = ()",

ykAp(n,k,c) - Zk:Ap(nfl,k,c)
_ k k b—af kn+c aa—b kn—+c
= (o) [(8) ot (52) 5]
k b—af3 k(n—1)+c aa—b k(n—1)+c
R (e P P
1
_ — B ((b _ aﬁ) ak(71,+1)+c + ((10{ _ b) Ié;k:(n+1)+c
+ (b _ aﬁ) akn+cl6k + (aa _ b) 6kn+cak
_ (b _ aﬂ) akn+0ﬂk . (aa o b) 5kn+cak)

_ (b— aﬁ) ak+D+e | <aa - b> gt te

a—pf a—pf
= Ap(n+1,k,c)7
which proves the lemma. O

Now we present a relationship between the terms A, 4 (n41),x,c) and the deter-
minant of a certain tridiagonal matrix.
Define the n x n tridiagonal matrix M, ; as shown:

Ap(tthie)  Ap(0,£k,c)v/ZEk
2tk Y+k VZ+k
(2.4) M, 11 = VZ+k Ytk
. 3tk
itk Ytk
Theorem 1. Forn > 1, we have
det Mn,:l:k: = Ap(n,:i:k,c)~

Proof. As before, we only consider the positively indexed terms. The other case
can be similarly derived. Expanding det M, ; using the cofactor expansion of a
determinant with respect to the last column, we obtain

det Mn,k = Yk det Mnfl,k — 2k det Mn,Q’k.

Replacing n = 1 in equation (2.3), we obtain A2 x.c) = Uk Ap(1k,c) — 26Ap0,k.c)
and det Ma = yrAp(i,k,c) — 2kAp(0,k,c)» and so, det My x = Apa.1.0). Obviously,
det My = Apai,k,e)- Since the recurrence relations (and initial conditions) of
det M,, ;, and the sequence {Ap(n,k:,c)} are the same, the conclusion follows from
Lemma 1. (]
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3. FACTORIZATIONS FOR A, (a,b;p,q) (x)

Now we investigate all possible cases of our main general considerations and then
we give their factorizations and representations. However, a few special cases could
be treated separately. For compactness, we do not consider all these cases, but we
shall point out, whenever appropriate some hints in treating those cases.

First, we consider the case Ap(1,+x,c) = y+r and Ay k) = 1. Under these
assumptions, we label the matrix M, 1+ and the sequence A4y 1 ) by M, T(lli  and

A;l(zl the) respectively. By Theorem 1, the matrix Mél)i .. takes the following form:

Y+k  /Z+k
M(l) . VAEE ARtk
n,tk — )
N IRRVACE
VZEk Ytk
and we have that

® _ 4M
(31) det Mn,:l:k: - Ap(n,ik:,c)'

Let Q1 be the following (n x n) tridiagonal Toeplitz matrix

The characteristic equation of the matrix (1 satisfies the following recursion, for
n>2

fn (/\) = _/\fn—l ()\) - fn—2 (>\) )
where f1 (A\) = —X and fo (\) = A — 1.
Taking A = —2z, the family {f, (A\)} is reduced to the family {U, (z)} (Cheby-
shev polynomial of the second kind). From [9, 8, 7], the zeros of the Chebyshev
polynomials are known, and so, the eigenvalues of ()1 are of the form:

(3.2) Ar=—2cos; T, T=12,...,n

1 _

. 1 . . .
We can also write Mn’ik = yiilyn + /21kQ1, where I, is the n X n unit matrix.

Theorem 2. Let Ap1 +r,c) = Y+k and Apo +r,c) = 1. Then forn > 1,

n

(1) _ o
Atk = H (yik — 2\/z4}, cos n+1) .

r=1

Proof. Assume that A.’s are the eigenvalues of the matrix Q; with respect to the
eigenvectors w,.. Since

My(:)ikwr = (y:I:kIn + v Z:I:le) Wy = Y lpw, + vV Z:thlwr
= (yzl:k + v Z:I:k)\r) W,
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the (y:tk + /zikkr)’s are the eigenvalues of the matrix Mfll)ik with respect to the
eigenvectors w,. Thus, by (3.2) and (3.1), we have the conclusion:

n

det Mélik A}(}(; the) = H (yar + VZ2rAr) = H (yik —2\/z4k
=1

[
Corollary 1. Forn > 1,
n/2
" yar 11 (Y3, — 422k cos2 =L ) if n is even,
1 _ r=1
p(n,tk,c) — (n—1)/2
(yik — 4zyp, cos® I if n is odd.
r=1
Proof. Since cos (km/n) = —cos((n —k)n/n) for 1 < k < n/2, the conclusion
follows from Theorem 2. O

Now we give some applications of Theorem 2 in the following corollaries.

Corollary 2. Let U, be nth Chebyshev polynomial of the second kind. Formn,k > 1,
then

(3.3) Ut(manp—1 = 2"Usr1 || (T:tk - n’;ﬁ) :

r=1
where T, is nth Chebyshev polynomial of the first kind.
Proof. When p = 2z,q = —1, then the first coefficient y; = 2751, where T}, is the
kth Chebyshev polynomials of the first kind (see Table 1). According to the first

case, to satisfy Az(;l()l,:l:k,c) = yi = 2T and Az()l(z)’ik’c) =1, we shall choose a = 1
and b = 2z. We see that for ¢ = —1,

1) ~ Usop Usp1
Ap(l,ik,q) ~ T = 2T and Ap(() k1) = Ui 1
and in general
AW _ Vet
p(n,£k,—1) Uip_1
Then by Theorem 2, we get for y, = 27} and 2z = 1
U n
(1) +(n+1)k
(34) Ap(n +he) ﬁ g (2Tik — 2cos n+1)
The required equation (3.3) follows immediately. O
Corollary 3. Forn,k > 1, then
—1 S 2 ( ar P
2" U 9p_1 ]:I [Tik — cos (n+1):| if n is odd,
Utk(nt1)-1 = /2 =1
2"Uyp_1 H [Tik — cos? (n+1)} if n is even.

Proof. The proof follows from Corollary 1 and equation (3.4). O
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Corollary 4. Let u, (x,t) be the generalized Fibonacci polynomial. Forn > 1 and
k>0,

n

(3.5) Ut (n+1)k (z,t) = usg (z,1) H <Uik (z,t) — 2 (_t)ik coS nT::l) ]

r=1

Proof. When p = x,q = t, then the first coefficient y1y = vy (z,t) where vy is the
kth term of the generalized Lucas polynomial sequence (see Table 1). For our first
case, to satisfy Az()l()l,:l:k,c) = yir = vip (z,t) and Az()l(éyik,c) =1, welet a =0 and

b=1. For ¢ =0, we get

(1) _ usop (w,1) (1) usg (2,t)
p(1,45,0) = 71&1@ @t vy (z,t) and Ap(Oik,O) = 71&]6 @) 1
and in general
(1) _ Udk(n+1)
p(n,£k,0) — Ut .
Then by Theorem 2, we obtain for y.j = viy (z,t) and 2 = (—t)"
n
(1) _ Ut(nt1k _ +k wr
B9 Al = = T (20 e )
and so, we have the required equation (3.5). O

Indeed, when k = 1, then by the above corollary, we get that uy = 1, v; = x
and so

n—1
— t(n=1)/2 & 9icos
Up (z,t) =t 1_[1(\6 21005n>
=
which is given in [2]. Thus it can be seen that our result generalizes earlier work.

Corollary 5. Forn > 1 and k > 0,

n/2
Uk 1:[1 (vi — 4y cos® nﬂ:l) if n is even,
U(n+1)k = (7::1)/2
U2k Hl (UJ% — 4y cos® nTI1) if n is odd.
re

Proof. Since ug,, = u,vy, by Corollary 1 and equation (3.6), we have the conclusion.
O

Next, we consider both binary and polynomial sequences satisfying A1, +x,c) =
Y+r and Ap,+k,) = 2. In this case, we label the matrix M, +; and the general

(2)
p(n,tk,c)’
Theorem 1 implies the following facts. For

Y+k  2\/7%k
V2tk Y+k \VAtk

sequence A,y +k.c) by ij[k and A respectively.

MvS:)tk = VE+k Y+k ,
h e Zxk
VZtk Ytk
we have
2 2)
(3.7) det M%), = A;(m o
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The (n x n) tridiagonal matrix Q2 as shown:

0 2
1 0 1
Q2 = 10
.1
1 0

The characteristic polynomial of matrix @Q,, satisfies the following recurrence rela-
tion: for n > 2

tn (8) = =6tn—1(0) — tp—2(d)
where t1 (§) = —8, t5 (6) = 6% — 2.
Taking 6 = —2z, the family {¢, (§) : n=1,2,...} is reduced to the family of
Chebyshev polynomials of the first kind {27}, (z) :n =1,2,...}. From [9, 8, 7],
since the zeros of Chebyshev polynomials of the first kind are known, we obtain

(3.8) 5, = —2cos (2T27n1)7r, r=1,2,...,n

We can also write M M ])c = ypl, + /2kQ2, where I, is the unit matrix of order n.

Theorem 3. Let Ap1 +r,c) = Y+k and Apo +k,e) = 2. Forn>1, k>0,

n

A(ZL +kc) H {y:ﬁ:k — 221 COS l)ﬂ} .

Proof. If the eigenvalues of Q5 are §,.’s with respect to the eigenvectors w,., then
M(Q,zzw"‘ = (ypIn + V2£Q2) wr = YyrLnw, + V2 Q2w = (Y + /2K0r) W

Thus the eigenvalues of Mff)ik are the y4r + /Z+x0,’s with respect to the eigen-
vectors w,. By (3.8),

n

det M( H i+ vZzror) = [ [ [ZJ:I:k — 2y/z5y, cos BT

r=1

By (3.7), the theorem is proven. O

Corollary 6. Forn > 1, k>0,

(n—-1)/2 (2r—1)
@ ye 11 { — 4z, cos? (%)} if n is odd,
— r=1
p(n,k,c) ™ n/2 _—
I1 [y,% — 4z, cos? (%)] if n is even.
r=1

Now we give some applications of the above results for some well known se-
quences.

Corollary 7. Let vy, (z,t) be the generalized Lucas polynomial sequence. Then for
n>1, k>0,

n
Vtion ( H( —24/(— )ikcos(%;nl)”>.
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Proof. When p = z,q = t, then the first coefficient yik = v (z,t) . For our second
case and satisfying A;E;Q()l,:tk,c) Y+r = vig and Ap(0 ihe) = = 2, letting a = 2 and
b = x, we see that for ¢ =0

(2)
Ap(l,:tk 0) = V+k and Ap(O +k,0) — T

and in general A](D(3I +k) = Utkn By Theorem 3, we have the conclusion: for yi; =

Vg and z4p = ( t)ik,

A(Q(ZL +k,0) = U:I:Icn x, t H (U:tk -2 ( )ik cos W) .

r=1

O

Corollary 8. Let vy, (z,t) be the generalized Lucas polynomial sequence. Then for
n>1, k>0,

(n—1)/2
vig (z,t) [vik (z,1)% — 4 (—t)** cos? (7(2?"2_”1)”)] if n is odd,
Vikn (2,1) = )2 r=1
I1 [Uik (,1)* — 4 (=1)*" cos® (%)} if n is even.
r=1

For the Chebyshev polynomial of the first kind, if we consider v,, (2z, —1) in the
above two corollaries, then we see that v, (2z,—1) = 2T,,, so

n

ik = Vipn (22, 1) = H (2T:|:k — 2cos (2T;’L1)W)

r=1

and clearly
Tin =27 [ (Tik — cos 7@;})”) .
r=1

In this third case, we let Apq +re) — Y+ = —1 and Ay k) = 1. Further,
we label the matrix M, 11 and the sequence A, 1) by Mfl?’)ik and Af&vikyc),
respectively.

Theorem 1 implies the following facts. For the n x n tridiagonal matrix M,(L3,1 :

Y+ — 1 /Zxk
2tk Y+k  \/Zxk
3 .
MT(L,:)I:k = VZ+k Ytk T ,

: \REk
VEEE Y+

by Theorem 1, we have for n > 1

3)
(3.9) det M}, =A%) L, .
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Define the (n x n) tridiagonal matrix Q3 as shown:

-1 1
1 0 1
Q3 = 1 0
1
1 0

Thus the characteristic polynomial of the matrix ()3 satisfies the following recur-
rence relation (for n > 2)

gn (1) = —pign—1 (1) — gn—2 (1)

where g1 (n) = —pp =1, ga () = p* + p — 1.

If we take 6 = —2z, then the family {g, (1) :n =1,2,...} is reduced to the
family of Chebyshev polynomials of the third kind {V,, (z) :n=1,2,...}. From
[9, 8, 7], the zeros of Chebyshev polynomials of the third kind are known, then we
obtain

E—YHr
(3.10) g, = —2cos(n+21)7 k=1,2,...,n.
2

We can also write Mffik = Yarln + /221 Q3.

Theorem 4. Let Ay tp.c) — Y+ = —1 and Ap +r,.c) =1. Forn>1, k>0,

n

Az(igz)n,:tk,c) = H (y:tk — 2\/z1), cos (22kn;11)7r) '

r=1

Proof. Let the eigenvalues of the matrix Q3 to be i, with respect to the eigenvectors
w,., and write

Ms)ikwr = (ysrln + 221Q3) wr = (Y£k + 22kl ) Wy

Thus the eigenvalues of M,Sg)ik are (y+k + \/Z1k/,.)- By equations (3.10) and (3.9),

we have

n

det MT(LB)ik = A;%L,ik,c) = H (yj:k — 2,/z1}, cos (22167;11)#) .

r=1

Thus the theorem is proven. O

The following corollary follows directly from Theorem 4 since, for 1 < k < n/2,
we have cos (A7) = — cos (@)

n

Corollary 9. Forn>1, k>0,

(n—1)/2 (2k—1)
3) Y+k H1 (yik — 4z, cos® (Tﬂw)) if n is odd,
p(n,tke) — n/2 |
Y1 — 424 cos —r if n is even.

A particular case of the previous corollary can be found in literature.
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Corollary 10. Forn > 1,

n
(3.11) Tini2 =2"T2 [ | <T4 — cos
k=1

i)

Proof. For k = 2, p = 2z,q = —1, the first coefficient is y4 = 274 (Chebyshev
polynomial of the first kind). Also under the conditions ¢ = 1 and b = 2z, we

o A3) o 3) _
obtain Ap(1747_2) =y = 2Ty and Ap(074,_2) =1,
(3) L 3) _B_
p(la-2) = T, 2Ty — 1 and Ap(074’_2) =7, 1
and in general
(3) _ Tty —2
p(n,4,—2) T .
Then by Theorem 4, we get for y, =27, and z4 = 1
Tinsn)-1 2k — 1)
3) _ ta(n+1)-1 B
(3.12) A= — = 1;[1 <2T4 2c08 25— )
and so equation (3.11) is obtained. O
By Corollary 9 and the above result, we have
(n—-1)/2 (k1)
VPSR (T42 — cos? (ﬁ)) if n is odd,
Tynto = njgl
27Ty ]:[1 (T42 — cos? ((22’“7;31)”)) if n is even.

Further, we consider our final case A +x,.c) — yxx = 1 and Ay k) = 1. In

this case, we label the matrix M, +; and the sequence A, +x.c) by Myik and

4)

Ap(n,i,w)7 respectively. By Theorem 1, we have

Yy+e + 1 /Zxk
Rtk Y+k V2A+k

Mr(fz)l:k = VZ+k Ytk ,

and forn > 1

4 4
(3.13) det M, =AY | .

We also define the (n x n) matrix Q4 as follows:

1 1
1 0 1
Qs = 10
1 o1
1 0

Thus the characteristic polynomial of Q4 satisfies the recurrence

hott (W) = —why (W) = hn—1 (w)
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where h (W) =1 —w and hs (W) = w? + w + 1.

Taking w = —2z, the family {h, (w)} is converted into the family of Chebyshev
polynomials of the fourth kind {W,, (z) :n=1,2,...}. By [9, 8, 7], the zeros of
Chebyshev polynomials of the fourth kind are known, namely

(k=1

The matrix Mffj)[k can be expressed as y+il, + /241 Q4.

(3.14) wi = —2cos , k=1,2,....n

Theorem 5. Let Ap1 +r,c) — Y+ =1 and Ay, +x,c) = 1. Forn>1, k>0,

A(%L the) = H (yik — 2./Z1) COS ; +11)7T) )

r=1

Proof. If w,’s are the eigenvalues of Mffi i according to the eigenvectors w;., then

M(4) JpWr = (y:l:k-[n + v Z:th4) Wy = Ytk T /Z+kWr.

Thus the eigenvalues of M,(:lik are (y+r + \/Zogrw,) and by (3.13), (3.14), we obtain
the conclusion:

det M(gk = H (yﬁ:k — 24/24 cos ;nﬁ“) .

r=1

As a consequence of Theorem 5, we have the following corollary.

Corollary 11. Forn > 1, k>0,

(n /2 2 2 (2(r—1)=w . .
(1) B Ytk Tl:ll (yik — 424y, cos (W)) if n is odd,
p(n,tk,c) — n
I1 (yik — 422}, cos® (%)) if n is even.
r=1
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