
FACTORIZATIONS AND REPRESENTATIONS OF BINARY
POLYNOMIAL RECURRENCES BY MATRIX METHODS

EMRAH KILIC AND PANTELIMON ST¼ANIC¼A

Abstract. In this paper we derive factorizations and representations of a
polynomial analogue of an arbitrary binary sequence by matrix methods. It
generalizes various results on Fibonacci, Lucas, Chebyshev and Morgan�Voyce
polynomials.

1. Introduction

In [10], the divisibility properties of the Fibonacci polynomial sequence ffn (x)g
was studied. The Fibonacci polynomial sequence is de�ned by the recursion

fn+2 (x) = xfn+1 (x) + fn (x) ; f0 (x) = 0; f1 (x) = 1:

Five years later, Hoggatt and Long [2] considered the general Fibonacci type poly-
nomial sequence fun (x; y)g of two variables. This sequence is de�ned by
(1.1) un+2 (x; y) = xun+1 (x; y) + yun (x; y)

where u0 (x; y) = 0 and u1 (x; y) = 1:
The authors of [2, 10] found the roots of these polynomials and then obtained

the factorizations of their polynomials. In [2], the authors found that

un (x; y) = y
(n�1)=2

n�1Y
k=1

�
x
p
y
� 2i cos k�

n

�
:

Further, in [1], the authors use the relationships between the determinants of
certain tridiagonal matrices and the Fibonacci and Lucas numbers, and then by
matrix methods, they obtained the factorizations and representations of these se-
quences. The factorization of Fibonacci numbers was initially proposed in [6], and
the factorization of Lucas numbers was obtained in [11].
The (companion) generalized Lucas polynomial sequence vn (x; y) is de�ned by

vn+2 (x; y) = xvn+1 (x; y) + yvn (x; y)

where v0 (x; y) = 2 and v1 (x; y) = 1:
Recently, in [5], the binary sequential analogues of the generalized Fibonacci and

Lucas polynomial sequences was considered and factorizations and representations
of these sequences was obtained. These sequences are de�ned by

Un+1 = AUn +BUn�1

Vn+1 = AVn +BVn�1
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where U0 = 0; U1 = 1 and V0 = 2; V1 = A; respectively. Also, in [4], we gave the
more general factorizations of second order linear recurrences fUng and fVng with
indices in arithmetic progressions. Furthermore, we obtained the factorization of
these general sequences by the matrix methods considering how these recurrences
are related to the determinants of certain tridiagonal matrices.
As it can be seen from the above mentioned results, the most general cases of

these polynomial and binary sequences have not been studied. Consequently, we
de�ne fAn (a; b; p; q) (x)g (we shall often drop the argument (a; b; p; q) and simply
write fAn(x)g) to be a polynomial sequence satisfying

An+1(x) = p(x)An(x) + q(x)An�1(x);

and initial conditions A0 = a(x); A1 = b(x), where a; b; p; q are polynomials of an
indeterminate x with real coe¢ cients. For easy notation, we shall sometimes write
An; p; q; a; b for An(x); p (x), q (x), a (x) and b (x), respectively. We display some
special cases of the sequence fAng in the following table.

p(x) q(x) a(x) b(x) An (a; b; p; q) (x) Polynomial Type
2x �1 1 x Tn (x) 1st kind Chebyshev
2x �1 1 2x Un (x) 2nd kind Chebyshev
x+ 1 �1 1 x+ 1 bn (x) Morgan-Voyce
x y 0 1 un (x; y) generalized Fibonacci
x y 2 1 vn (x; y) generalized Lucas
2x �1 1 2x+ 1 Wn (x) 4th kind Chebyshev
2x �1 1 2x� 1 Vn (x) 3rd kind Chebyshev

Table 1

In Section 2 we present a recurrence, and de�ne a tridiagonal matrix whose
determinant is precisely An (a; b; p; q) (x), with n in an arithmetic progression, n � c
(mod k). In our main Section 3 we derive the factorization and representations
of the sequence fAn (a; b; p; q)g (under some assumptions), by matrix methods,
thus generalizing some results of [1]�[5] and others. As consequences, we obtain
the factorizations for the Chebyshev�s and generalized Lucas polynomials, among
others.

2. A recurrence for An (a; b; p; q) (x), where n � c (mod k)

We start this section with the Binet formulas of both positively and negatively
indexed terms of the sequence fAng, namely

(2.1) A�n =

�
b� a�
�� �

�
��n +

�
a�� b
�� �

�
��n

where

(2.2) � =
p+

p
p2 + 4q

2
; � =

p�
p
p2 + 4q

2
:

First, we prove the following lemma.

Lemma 1. For k > 0; n > 0, the sequence fAng satis�es the following recursion

(2.3) Ap(n+1;�k;c) = y�kAp(n;�k;c) � z�kAp(n�1;�k;c)

where y�k = ��k + �
�k, z�k = q�k and p(n; k; c) = nk + c (c constant).
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Proof. From the de�nition of the sequence fAng, considering the case A0 = 2 and
A1 = p; we write

y�k = A�k (2; p; p; q) = �
�k + ��k

where � and � are given by (2.2). Further, for the positive case, we note that

yk = Ak (2; p; p; q) = �
k + �k:

Since the positively and negatively indexed terms cases are similar, we only
consider the positively indexed terms case. By the Binet formula of the sequence
fAng and since zk = qk = (��)k ;

ykAp(n;k;c) � zkAp(n�1;k;c)
=

�
�k + �k

� h�
b�a�
���

�
�kn+c +

�
a��b
���

�
�kn+c

i
� (��)k

h�
b�a�
���

�
�k(n�1)+c +

�
a��b
���

�
�k(n�1)+c

i
=

1

�� � ((b� a�)�
k(n+1)+c + (a�� b)�k(n+1)+c

+(b� a�)�kn+c�k + (a�� b)�kn+c�k

� (b� a�)�kn+c�k � (a�� b)�kn+c�k)

=

�
b� a�
�� �

�
�k(n+1)+c +

�
a�� b
�� �

�
�k(n+1)+c

= Ap(n+1;k;c);

which proves the lemma. �

Now we present a relationship between the terms Ap(�(n+1);k;c) and the deter-
minant of a certain tridiagonal matrix.
De�ne the n� n tridiagonal matrix Mn;k as shown:

(2.4) Mn;�k =

26666664

Ap(1;�k;c) Ap(0;�k;c)
p
z�kp

z�k y�k
p
z�k

p
z�k y�k

. . .
. . .

. . . p
z�kp

z�k y�k

37777775 :

Theorem 1. For n > 1, we have

detMn;�k = Ap(n;�k;c):

Proof. As before, we only consider the positively indexed terms. The other case
can be similarly derived. Expanding detMn;k using the cofactor expansion of a
determinant with respect to the last column, we obtain

detMn;k = yk detMn�1;k � zk detMn�2;k:

Replacing n = 1 in equation (2.3), we obtain Ap(2;k;c) = ykAp(1;k;c) � zkAp(0;k;c)
and detM2;k = ykAp(1;k;c) � zkAp(0;k;c), and so, detM2;k = Ap(2;k;c). Obviously,
detM1;k = Ap(1;k;c). Since the recurrence relations (and initial conditions) of
detMn;k and the sequence

�
Ap(n;k;c)

	
are the same, the conclusion follows from

Lemma 1. �



4 EMRAH KILIC AND PANTELIMON ST ¼ANIC ¼A

3. Factorizations for An (a; b; p; q) (x)

Now we investigate all possible cases of our main general considerations and then
we give their factorizations and representations. However, a few special cases could
be treated separately. For compactness, we do not consider all these cases, but we
shall point out, whenever appropriate some hints in treating those cases.
First, we consider the case Ap(1;�k;c) = y�k and Ap(0;�k;c) = 1: Under these

assumptions, we label the matrix Mn;�k and the sequence Ap(�n;k;c) byM
(1)
n;�k and

A
(1)
p(n;�k;c); respectively. By Theorem 1, the matrixM

(1)
n;�k takes the following form:

M
(1)
n;�k =

266664
y�k

p
z�k

p
z�k

p
z�k

. . .
. . .

. . . p
z�kp

z�k y�k

377775
and we have that

(3.1) detM
(1)
n;�k = A

(1)
p(n;�k;c):

Let Q1 be the following (n� n) tridiagonal Toeplitz matrix

Q1 =

266664
0 1

1 0
. . .

. . .
. . . 1
1 0

377775 :
The characteristic equation of the matrix Q1 satis�es the following recursion, for
n > 2

fn (�) = ��fn�1 (�)� fn�2 (�) ;

where f1 (�) = �� and f2 (�) = �2 � 1:
Taking � � �2x; the family ffn (�)g is reduced to the family fUn (x)g (Cheby-

shev polynomial of the second kind). From [9, 8, 7], the zeros of the Chebyshev
polynomials are known, and so, the eigenvalues of Q1 are of the form:

(3.2) �r = �2 cos �r
n+1 ; r = 1; 2; : : : ; n:

We can also write M (1)
n;�k = y�kIn +

p
z�kQ1, where In is the n� n unit matrix.

Theorem 2. Let Ap(1;�k;c) = y�k and Ap(0;�k;c) = 1. Then for n > 1;

A
(1)
p(n;�k;c) =

nY
r=1

�
y�k � 2

p
z�k cos

�r
n+1

�
:

Proof. Assume that �r�s are the eigenvalues of the matrix Q1 with respect to the
eigenvectors wr: Since

M
(1)
n;�kwr =

�
y�kIn +

p
z�kQ1

�
wr = y�kInwr +

p
z�kQ1wr

=
�
y�k +

p
z�k�r

�
wr;



FACTORIZATIONS AND REPRESENTATIONS OF BINARY POLYNOMIAL RECURRENCES 5

the
�
y�k +

p
z�k�r

�
�s are the eigenvalues of the matrix M (1)

n;�k with respect to the
eigenvectors wr: Thus, by (3.2) and (3.1), we have the conclusion:

detM
(1)
n;�k = A

(1)
p(n;�k;c) =

nY
r=1

�
y�k +

p
z�k�r

�
=

nY
r=1

�
y�k � 2

p
z�k cos

�r
n+1

�
:

�

Corollary 1. For n > 1;

A
(1)
p(n;�k;c) =

8>><>>:
y�k

n=2Q
r=1

�
y2�k � 4z�k cos2 �r

n+1

�
if n is even,

(n�1)=2Q
r=1

�
y2�k � 4z�k cos2 �r

n+1

�
if n is odd.

Proof. Since cos (k�=n) = � cos ((n� k)�=n) for 1 � k � n=2; the conclusion
follows from Theorem 2. �

Now we give some applications of Theorem 2 in the following corollaries.

Corollary 2. Let Un be nth Chebyshev polynomial of the second kind. For n; k > 1;
then

(3.3) U�(n+1)k�1 = 2
nU�k�1

nY
r=1

�
T�k � cos �r

n+1

�
:

where Tn is nth Chebyshev polynomial of the �rst kind.

Proof. When p = 2x; q = �1; then the �rst coe¢ cient y�k = 2T�k, where Tk is the
kth Chebyshev polynomials of the �rst kind (see Table 1). According to the �rst
case, to satisfy A(1)p(1;�k;c) = y�k = 2T�k and A

(1)
p(0;�k;c) = 1; we shall choose a = 1

and b = 2x. We see that for c = �1;

A
(1)
p(1;�k;�1) =

U�2k�1
U�k�1

= 2T�k and A
(1)
p(0;�k;�1) =

U�k�1
U�k�1

= 1

and in general

A
(1)
p(n;�k;�1) =

U�(n+1)k�1

U�k�1
:

Then by Theorem 2, we get for yk = 2Tk and zk = 1

(3.4) A
(1)
p(n;�k;c) =

U�(n+1)k�1

U�k�1
=

nY
r=1

�
2T�k � 2 cos �r

n+1

�
:

The required equation (3.3) follows immediately. �

Corollary 3. For n; k > 1; then

U�k(n+1)�1 =

8>><>>:
2n�1U�2k�1

(n�1)=2Q
r=1

h
T 2�k � cos2

�
�r
n+1

�i
if n is odd,

2nU�k�1
n=2Q
r=1

h
T 2�k � cos2

�
�r
n+1

�i
if n is even.

Proof. The proof follows from Corollary 1 and equation (3.4). �



6 EMRAH KILIC AND PANTELIMON ST ¼ANIC ¼A

Corollary 4. Let un (x; t) be the generalized Fibonacci polynomial. For n > 1 and
k > 0;

(3.5) u�(n+1)k (x; t) = u�k (x; t)
nY
r=1

�
v�k (x; t)� 2

q
(�t)�k cos �r

n+1

�
:

Proof. When p = x; q = t; then the �rst coe¢ cient y�k = v�k (x; t) where vk is the
kth term of the generalized Lucas polynomial sequence (see Table 1). For our �rst
case, to satisfy A(1)p(1;�k;c) = y�k = v�k (x; t) and A

(1)
p(0;�k;c) = 1; we let a = 0 and

b = 1. For c = 0, we get

A
(1)
p(1;�k;0) =

u�2k (x; t)

u�k (x; t)
= v�k (x; t) and A

(1)
p(0;�k;0) =

u�k (x; t)

u�k (x; t)
= 1

and in general

A
(1)
p(n;�k;0) =

u�k(n+1)

u�k
:

Then by Theorem 2, we obtain for y�k = v�k (x; t) and zk = (�t)k ;

(3.6) A
(1)
p(n;�k;0) =

u�(n+1)k

u�k
=

nY
r=1

�
v�k � 2

q
(�t)�k cos �r

n+1

�
and so, we have the required equation (3.5). �
Indeed, when k = 1; then by the above corollary, we get that u1 = 1; v1 = x

and so

un (x; t) = t
(n�1)=2

n�1Y
r=1

�
xp
t
� 2i cos r�

n

�
which is given in [2]. Thus it can be seen that our result generalizes earlier work.

Corollary 5. For n > 1 and k > 0;

u(n+1)k =

8>><>>:
uk

n=2Q
r=1

�
v2k � 4y cos2 �r

n+1

�
if n is even,

u2k
(n�1)=2Q
r=1

�
v2k � 4y cos2 �r

n+1

�
if n is odd.

Proof. Since u2n = unvn, by Corollary 1 and equation (3.6), we have the conclusion.
�

Next, we consider both binary and polynomial sequences satisfying Ap(1;�k;c) =
y�k and Ap(0;�k;c) = 2. In this case, we label the matrix Mn;�k and the general

sequence Ap(n;�k;c) by M
(2)
n;�k and A

(2)
p(n;�k;c); respectively.

Theorem 1 implies the following facts. For

M
(2)
n;�k =

26666664

y�k 2
p
z�kp

z�k y�k
p
z�k

p
z�k y�k

. . .
. . .

. . . p
z�kp

z�k y�k

37777775 ;
we have

(3.7) detM
(2)
n;�k = A

(2)
p(n;�k;c):
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The (n� n) tridiagonal matrix Q2 as shown:

Q2 =

26666664

0 2
1 0 1

1 0
. . .

. . .
. . . 1
1 0

37777775 :

The characteristic polynomial of matrix Qn satis�es the following recurrence rela-
tion: for n > 2

tn (�) = ��tn�1 (�)� tn�2 (�)
where t1 (�) = ��; t2 (�) = �2 � 2:
Taking � � �2x; the family ftn (�) : n = 1; 2; : : :g is reduced to the family of

Chebyshev polynomials of the �rst kind f2Tn (x) : n = 1; 2; : : :g : From [9, 8, 7],
since the zeros of Chebyshev polynomials of the �rst kind are known, we obtain

(3.8) �r = �2 cos (2r�1)�2n ; r = 1; 2; : : : ; n:

We can also write M (2)
n;k = ykIn +

p
zkQ2, where In is the unit matrix of order n:

Theorem 3. Let Ap(1;�k;c) = y�k and Ap(0;�k;c) = 2. For n > 1; k > 0;

A
(2)
p(n;�k;c) =

nY
r=1

h
y�k � 2

p
z�k cos

(2r�1)�
2n

i
:

Proof. If the eigenvalues of Q2 are �r�s with respect to the eigenvectors wr; then

M
(2)
n;kwr = (ykIn +

p
zkQ2)wr = ykInwr +

p
zkQ2wr = (yk +

p
zk�r)wr:

Thus the eigenvalues of M (2)
n;�k are the y�k +

p
z�k�r�s with respect to the eigen-

vectors wr: By (3.8),

detM
(2)
n;�k =

nY
r=1

�
y�k +

p
z�k�r

�
=

nY
r=1

h
y�k � 2

p
z�k cos

(2r�1)�
2n

i
:

By (3.7), the theorem is proven. �

Corollary 6. For n > 1; k > 0;

A
(2)
p(n;k;c) =

8>><>>:
yk

(n�1)=2Q
r=1

h
y2k � 4zk cos2

�
(2r�1)�
2n

�i
if n is odd,

n=2Q
r=1

h
y2k � 4zk cos2

�
(2r�1)�
2n

�i
if n is even.

Now we give some applications of the above results for some well known se-
quences.

Corollary 7. Let vn (x; t) be the generalized Lucas polynomial sequence. Then for
n > 1; k > 0;

v�kn (x; t) =

nY
r=1

�
v�k (x; t)� 2

q
(�t)�k cos (2r�1)�2n

�
:
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Proof. When p = x; q = t; then the �rst coe¢ cient y�k = v�k (x; t) : For our second
case and satisfying A(2)p(1;�k;c) = y�k = v�k and A

(2)
p(0;�k;c) = 2; letting a = 2 and

b = x, we see that for c = 0

A
(2)
p(1;�k;0) = v�k and A

(2)
p(0;�k;0) = x

and in general A(2)p(n;�k;) = v�kn: By Theorem 3, we have the conclusion: for y�k =

v�k and z�k = (�t)�k ;

A
(2)
p(n;�k;0) = v�kn (x; t) =

nY
r=1

�
v�k (x; t)� 2

q
(�t)�k cos (2r�1)�2n

�
:

�

Corollary 8. Let vn (x; t) be the generalized Lucas polynomial sequence. Then for
n > 1; k > 0;

v�kn (x; t) =

8>><>>:
v�k (x; t)

(n�1)=2Q
r=1

h
v�k (x; t)

2 � 4 (�t)�k cos2
�
(2r�1)�

2n

�i
if n is odd,

n=2Q
r=1

h
v�k (x; t)

2 � 4 (�t)�k cos2
�
(2r�1)�

2n

�i
if n is even.

For the Chebyshev polynomial of the �rst kind, if we consider vn (2x;�1) in the
above two corollaries, then we see that vn (2x;�1) = 2Tn, so

2T�kn = v�kn (2x;�1) =
nY
r=1

�
2T�k � 2 cos (2r�1)�2n

�
and clearly

T�kn = 2
n�1

nY
r=1

�
T�k � cos (2r�1)�2n

�
:

In this third case, we let Ap(1;�k;c) � y�k = �1 and Ap(0;�k;c) = 1. Further,

we label the matrix Mn;�k and the sequence Ap(n;�k;c) by M
(3)
n;�k and A

(3)
p(n;�k;c);

respectively.
Theorem 1 implies the following facts. For the n� n tridiagonal matrix M (3)

n;k :

M
(3)
n;�k =

26666664

y�k � 1
p
z�kp

z�k y�k
p
z�k

p
z�k y�k

. . .
. . .

. . . p
z�kp

z�k y�k

37777775 ;

by Theorem 1, we have for n > 1

(3.9) detM
(3)
n;�k = A

(3)
p(n;�k;c):
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De�ne the (n� n) tridiagonal matrix Q3 as shown:

Q3 =

26666664

�1 1
1 0 1

1 0
. . .

. . .
. . . 1
1 0

37777775 :

Thus the characteristic polynomial of the matrix Q3 satis�es the following recur-
rence relation (for n > 2)

gn (�) = ��gn�1 (�)� gn�2 (�)

where g1 (�) = ��� 1; g2 (�) = �2 + �� 1:
If we take � � �2x; then the family fgn (�) : n = 1; 2; : : :g is reduced to the

family of Chebyshev polynomials of the third kind fVn (x) : n = 1; 2; : : :g : From
[9, 8, 7], the zeros of Chebyshev polynomials of the third kind are known, then we
obtain

(3.10) �k = �2 cos
�
k � 1

2

�
�

n+ 1
2

; k = 1; 2; : : : ; n:

We can also write M (3)
n;�k = y�kIn +

p
z�kQ3.

Theorem 4. Let Ap(1;�k;c) � y�k = �1 and Ap(0;�k;c) = 1. For n > 1; k > 0;

A
(3)
p(n;�k;c) =

nY
r=1

�
y�k � 2

p
z�k cos

(2k�1)�
2n+1

�
:

Proof. Let the eigenvalues of the matrixQ3 to be �r with respect to the eigenvectors
wr, and write

M
(3)
n;�kwr =

�
y�kIn +

p
z�kQ3

�
wr =

�
y�k +

p
z�k�r

�
wr:

Thus the eigenvalues ofM (3)
n;�k are

�
y�k +

p
z�k�r

�
. By equations (3.10) and (3.9),

we have

detM
(3)
n;�k = A

(3)
p(n;�k;c) =

nY
r=1

�
y�k � 2

p
z�k cos

(2k�1)�
2n+1

�
:

Thus the theorem is proven. �

The following corollary follows directly from Theorem 4 since, for 1 � k � n=2,
we have cos

�
k�
n

�
= � cos

�
(n�k)�

n

�
.

Corollary 9. For n > 1; k > 0;

A
(3)
p(n;�k;c) =

8>><>>:
y�k

(n�1)=2Q
r=1

�
y2�k � 4z�k cos2

�
(2k�1)�
2n+1

��
if n is odd,

n=2Q
r=1

�
y2�k � 4z�k cos2

�
(2k�1)�
2n+1

��
if n is even.

A particular case of the previous corollary can be found in literature.
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Corollary 10. For n > 1;

(3.11) T4n+2 = 2
nT2

nY
k=1

�
T4 � cos

(2k � 1)�
2n+ 1

�
:

Proof. For k = 2; p = 2x; q = �1; the �rst coe¢ cient is y4 = 2T4 (Chebyshev
polynomial of the �rst kind). Also under the conditions a = 1 and b = 2x; we
obtain A(3)p(1;4;�2) = y4 = 2T4 and A

(3)
p(0;4;�2) = 1;

A
(3)
p(1;4;�2) =

T6
T2
= 2T4 � 1 and A(3)p(0;4;�2) =

T2
T2
= 1

and in general

A
(3)
p(n;4;�2) =

T4(n+1)�2

T2
:

Then by Theorem 4, we get for y4 = 2T4 and z4 = 1

(3.12) A
(3)
p(n;4;�2) =

T4(n+1)�1

T2
=

nY
r=1

�
2T4 � 2 cos

(2k � 1)�
2n+ 1

�
and so equation (3.11) is obtained. �

By Corollary 9 and the above result, we have

T4n+2 =

8>><>>:
2nT4T2

(n�1)=2Q
r=1

�
T 24 � cos2

�
(2k�1)�
2n+1

��
if n is odd,

2nT2
n=2Q
r=1

�
T 24 � cos2

�
(2k�1)�
2n+1

��
if n is even.

Further, we consider our �nal case Ap(1;�k;c) � y�k = 1 and Ap(0;�k;c) = 1: In

this case, we label the matrix Mn;�k and the sequence Ap(n;�k;c) by M
(4)
n;�k and

A
(4)
p(n;�k;c); respectively. By Theorem 1, we have

M
(4)
n;�k =

26666664

y�k + 1
p
z�kp

z�k y�k
p
z�k

p
z�k y�k

. . .
. . .

. . . p
z�kp

z�k y�k

37777775 ;

and for n > 1

(3.13) detM
(4)
n;�k = A

(4)
p(n;�k;c):

We also de�ne the (n� n) matrix Q4 as follows:

Q4 =

26666664

1 1
1 0 1

1 0
. . .

1
. . . 1
1 0

37777775 :

Thus the characteristic polynomial of Q4 satis�es the recurrence

hn+1 (!) = �!hn (!)� hn�1 (!)
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where h1 (!) = 1� ! and h2 (!) = !2 + ! + 1:
Taking ! � �2x; the family fhn (!)g is converted into the family of Chebyshev

polynomials of the fourth kind fWn (x) : n = 1; 2; : : :g : By [9, 8, 7], the zeros of
Chebyshev polynomials of the fourth kind are known, namely

(3.14) !k = �2 cos
(k � 1)�
n+ 1

2

; k = 1; 2; : : : ; n:

The matrix M (4)
n;�k can be expressed as y�kIn +

p
z�kQ4:

Theorem 5. Let Ap(1;�k;c) � y�k = 1 and Ap(0;�k;c) = 1. For n > 1; k > 0;

A
(4)
p(n;�k;c) =

nY
r=1

�
y�k � 2

p
z�k cos

2(r�1)�
2n+1

�
:

Proof. If !r�s are the eigenvalues of M
(4)
n;�k according to the eigenvectors wr; then

M
(4)
n;�kwr =

�
y�kIn +

p
z�kQ4

�
wr = y�k +

p
z�k!r:

Thus the eigenvalues ofM (4)
n;�k are

�
y�k +

p
z�k!r

�
and by (3.13), (3.14), we obtain

the conclusion:

detM
(4)
n;�k =

nY
r=1

�
y�k � 2

p
z�k cos

2(r�1)�
2n+1

�
:

�
As a consequence of Theorem 5, we have the following corollary.

Corollary 11. For n > 1; k > 0;

A
(4)
p(n;�k;c) =

8>><>>:
y�k

(n�1)=2Q
r=1

�
y2�k � 4z�k cos2

�
2(r�1)�
2n+1

��
if n is odd,

nQ
r=1

�
y2�k � 4z�k cos2

�
2(r�1)�
2n+1

��
if n is even.
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