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Abstract. In this paper, we consider an arbitrary binary polynomial sequence
fAng and then give a lower triangular matrix representation of this sequence.
As main result, we obtain a factorization of the in�nite generalized Pascal
matrix in terms of this new matrix, using a Riordan group approach. Further
some interesting results and applications are derived.

1. INTRODUCTION

For n > 0; the n� n Pascal matrix Pn = [pij ] is de�ned as follows [5]:

pij =

� �
i�1
j�1
�
if i � j,

0 otherwise.

The authors [1] are the �rst to give matrix representations of the Pascal triangle.
In [12], for a nonzero real x, the Pascal matrices Pn [x] = [Pn (x; i; j)] and Qn [x] =
[Qn (x; i; j)] are generalized as follows

Pn (x; i; j) =

� �
i�1
j�1
�
xi�j if i � j,

0 otherwise,

and

Qn (x; i; j) =

� �
i�1
j�1
�
xi+j�2 if i � j,

0 otherwise.

Further in [13], the authors generalize the Pascal matrices Pn [x] and Qn [x] for
two nonzero real numbers x and y as follows

' [x; y]ij =

� �
i�1
j�1
�
xi�jyi+j�2 if i � j,

0 otherwise.

The Fibonacci and Lucas sequences have been discussed in so many studies.
Besides, various generalizations and matrix representations of these sequences have
been also introduced and investigated.
For nonnegative integers A and B such that A2 + 4B 6= 0; the generalized

Fibonacci and Lucas type sequences fUn (A;B)g and fVn (A;B)g are de�ned by
for n > 0

Un+1 (A;B) = AUn (A;B) +BUn�1 (A;B) ;

Vn+1 (A;B) = AVn (A;B) +BVn�1 (A;B)
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where U0 (A;B) = 0; U1 (A;B) = 1 and V0 (A;B) = 2; V1 (A;B) = A; respectively.
For example, Un (1; 1) = Fn (nth Fibonacci number) and Vn (1; 1) = Ln (nth Lucas
number).
For the polynomial versions of generalized Fibonacci and Lucas numbers, we refer

to [2]. Even more general cases of these polynomials are considered in [4], where two
of us de�ne the polynomial sequence fAn (a; b; p; q) (x)g (brie�y fAn (x)g) satisfying

An+1 (x) = p (x)An (x)� q (x)An�1 (x) (1.1)

with A0 (x) = a (x) ; A1 (x) = b (x), where a; b; p; q are polynomials of x with real
coe¢ cients. In their study, the authors of [4] show that for n > 0; any integer k
and n � c (mod jkj) ; the sequence fAng satis�es the following recursion:

Ap(n+1;k;c) = skAp(n;k;c) � zkAp(n�1;k;c)

where s�k = �k + �k; zk = qk and p (n; k; c) = nk + c (c constant) and �; � =�
p�

p
p2 � 4q

�
=2:

Further, in [6], the authors de�ne the n � n Fibonacci matrix Fn = [fij ] in the
form

[fij ] =

�
Fi�j+1 if i� j + 1 � 0,
0 otherwise,

where Fn is the nth Fibonacci number. This was generalized in [7], where the

authors introduce the n� n generalized Fibonacci matrix F [x; y]n =
h
f [x; y]ij

i
as

shown

f [x; y]ij =

�
Fi�j+1x

i�jyi+j�2 if i � j,
0 otherwise.

Also the authors de�ne the in�nite generalized Fibonacci matrix in the form

F [x; y] =

26664
1 0 0 :::
xy y2 0 :::
2x2y2 xy3 y4 :::
...

...
...

. . .

37775 ; (1.2)

and the in�nite generalized Pell matrix by

S [x; y] =

26664
1 0 0 :::
2xy y2 0 :::
5x2y2 2xy3 y4 :::
...

...
...

. . .

37775 : (1.3)

Similarly, they de�ne the in�nite matrices L [x; y] =
h
l [x; y]ij

i
and M [x; y] =h

m [x; y]ij

i
as follows:

l [x; y]ij =
��

i�1
j�1
�
�
�
i�2
j�1
�
�
�
i�3
j�1
��
xi�jyj�i (1.4)

and
m [x; y]ij =

��
i�1
j�1
�
� 2
�
i�2
j�1
�
�
�
i�3
j�1
��
xi�jyj�i: (1.5)

They also show that the matrices F [x; y] ; L [x; y] ; S [x; y] and M [x; y] satisfy
� [x; y] = F [x; y] � L [x; y] and � [x; y] = S [x; y] � M [x; y] where � [x; y] is the
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in�nite generalized Pascal matrix de�ned by

� [x; y] =

26664
1 0 0 :::
xy y2 0 :::
x2y2 2xy3 y4 :::
...

...
...

. . .

37775 : (1.6)

In [14],the authors de�ne an n� n matrix Rn = [ri;j ], where

rij =
�
i�1
j�1
�
�
�
i�1
j

�
�
�
i�1
j+1

�
; (1.7)

which they use to show that Pn = RnFn and the following factorization�
n�1
r�1
�
= Fn�r+1 + (n� 2)Fn�r + 1

2

�
n2 � 5n+ 2

�
Fn�r�1

+
n�3P
k=r

�
n�1
k�1
� h
2� n

k �
(n�k)(n�k�1)

k(k+1)

i
Fk�r+1:

where Fn and Pn are de�ned as before.
St¼anic¼a [9] looks at a more general case of the results of [6, 14]: he considers the

n� n matrix Un = (uij) in terms of the sequence fUn (A;B)g, where

uij =

�
Ui�j+1 if i � j,
0 otherwise.

Then the author give the factorization of any matrix in terms of the matrix Un:
In [8], the Riordan group was de�ned as follows: Let R = [rij ]i;j�0 be an in-

�nite matrix whose entries are complex numbers and ci (t) =
P1

n�0 rn;it
n be the

generating function of the ith column of R: If ci (t) = g (t) [f (t)]
i where

g (t) = 1 + g1t+ g2t
2 + g3t

3 + � � � ; and f (t) = t+ f2t2 + f3t3 + � � � ;

then R is a Riordan matrix. When < denotes the set of Riordan matrices, the set
< is a group under matrix multiplication �; with the following properties:
(R1) (g (t) ; f (t)) � (h (t) ; l (t)) = (g (t)h (f (t)) ; l (f (t))) :
(R2) I = (1; t) is the identity element.

(R3) The inverse of R is given by R�1 =
�

1

g(f(t))
; f (t)

�
; where f (t) is the

compositional inverse of f (t) ; i.e., f
�
f (t)

�
= f (f (t)) = t:

(R4) If (a0; a1; a2; :::)
T is a column vector with generating function A (t) ; then

multiplying R = (g (t) ; f (t)) on the right by this column vector yields a
column vector with generating function B (t) = g (t)A (f (t)) :

In [6], the authors generalize the in�nite Pascal, Fibonacci and Pell matrices and
then give factorizations of the in�nite generalized Pascal matrix by using Riordan
method.
Let Rn = [ri;j ] be the n� n matrix given as before. In [10], using the equations

Pn = RnFn and PnEn = RnFnEn for the n� n Fibonacci matrix Fn = [fij ] ; the
n�n Pascal matrix Pn = [pij ] and the n�1 matrix En = (1; 1; :::; 1)T ; the authors
show that

n+ 1 =
nP
l=1

(n�1)!
(l+1)!(n�l)!

�
l2 + (n+ 1) l � n2

�
Fl+2

where 1 � i; j � n and Fn is the nth Fibonacci number.
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In this paper, we consider the arbitrary binary polynomial sequence fAng and
then give a lower triangular matrix representation of this sequence. By the de-
�nition of Riordan matrices, we obtain a factorization of the in�nite generalized
Pascal matrix in terms of this new matrix. Further some interesting results and
applications are derived.

2. A Factorization of the Generalized Pascal Matrix

For any two nonzero real variables x and y, an in�nite matrixH [x; y] =
h
h [x; y]ij

i
is de�ned as follows:

h [x; y]ij =

�
Ap(i�j+1;�k;c)x

i�jyi+j�2 if i � j,
0 otherwise,

where
�
Ap(n+1;�k;c)

	
and p (n+ 1;�k; c) are de�ned as before.

Clearly the matrix H [x; y] is of the form

H [x; y] =

26664
Ap(1;�k;c) 0 0 :::
Ap(2;�k;c)xy Ap(1;�k;c)y

2 0 :::
Ap(3;�k;c)x

2y2 Ap(2;�k;c)xy
3 Ap(1;�k;c)y

4 :::
...

...
...

. . .

37775 :
Now we give the Riordan representation of the in�nite matrix H [x; y] : Let the
Riordan representation of H [x; y] be (gH (t) ; fH (t)) : Here the generating function
of the jth column of H [x; y] is cj (t) = gH (t) [fH (t)]

j
: Since the �rst column vector

of H [x; y] is
�
Ap(1;�k;c); Ap(2;�k;c)xy;Ap(3;�k;c)x

2y2; :::
�T
, we can write

gH (t) = Ap(1;�k;c)+Ap(2;�k;c)xyt+Ap(3;�k;c)x
2y2t2+ : : :

�s�kxytgH (t) = �s�kAp(1;�k;c)xyt� s�kAp(2;�k;c)x2y2t2�s�kAp(3;�k;c)x3y3t3 � : : :
z�kx

2y2t2gH (t) = z�kAp(1;�k;c)x
2y2t2+z�kAp(2;�k;c)x

3y3t3+z�kAp(3;�k;c)x
3y3t3 + : : :

By summing the above three equalities side by side, we get

gH (t) =
Ap(1;�k;c) � z�kAp(0;�k;c)xyt
1� s�kxyt+ z�k (xyt)2

:

Since h [x; y]ij = y2h [x; y]i�1;j�1 for j � 2, we have that cj (t) = y2tcj�1 (t) and

gH (t) [fH (t)]
j
= y2tgH (t) [fH (t)]

j�1
: Hence we get fH (t) = y2t: Consequently

the Riordan representation of H [x; y] is given by

H [x; y] =

 
Ap(1;�k;c) � z�kAp(0;�k;c)xyt
1� s�kxyt+ z�k (xyt)2

; y2t

!
: (2.1)

For two nonzero real numbers x and y; de�ne the in�nite matrix C [x; y] =
h
c [x; y]ij

i
with c [x; y]ij =

�
1

Ap(1;�k;c)

�
i�1
j�1
�
� Ap(2;�k;c)

A2
p(1;�k;c)

�
i�2
j�1
�

� z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

��
i�3
j�1
�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

�
�
 
i�3X
m=1

�
i�m�3
j�1

� � z�kAp(0;�k;c)
Ap(1;�k;c)

�m!!
xi�jyj�i if i � j and 0 otherwise.

We now give the following theorem.
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Theorem 1.
� [x; y] = H [x; y] � C [x; y] :

Proof. Since C [x; y] is a Riordan matrix, we write C [x; y] = (gC (t) ; fC (t)) : Con-
sidering the �rst column vector of C [x; y] ; we have

gC (t)

= 1
Ap(1;�k;c)

+

�
1

Ap(1;�k;c)
� Ap(2;�k;c)

A2
p(1;�k;c)

�
xy�1t+�

1
Ap(1;�k;c)

� Ap(2;�k;c)
A2
p(1;�k;c)

� z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

���
xy�1t

�2
+�

1
Ap(1;�k;c)

� Ap(2;�k;c)
A2
p(1;�k;c)

� z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

���
xy�1t

�3
+ � � �

=
�
1 + xy�1t+

�
xy�1t

�2
+ � � �

��
1

Ap(1;�k;c)
� Ap(2;�k;c)

A2
p(1;�k;c)

xy�1t

�
�

z�k

�
1 + xy�1t+

�
xy�1t

�2
+ � � �

��
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

��
xy�1t

�2
�
1+
�
z�kAp(0;�k;c)
Ap(1;�k;c)

�
xy�1t+

�
z2�kA

2
p(0;�k;c)

A2
p(1;�k;c)

��
xy�1t

�2
+ � � �

�
=

�
1

1�xy�1t

��
1�s�kxy�1t+z�k(xy�1t)

2

(Ap(1;�k;c)�z�kAp(0;�k;c)xy�1t)

�
:

Let the generating function of the jth column of C [x; y] be cj (t)= gC (t) [fC (t)]
j
:

Considering
c [x; y]ij =c [x; y]i�1;j�1+xy

�1c [x; y]i�1;j
for j � 2; we obtain

cj (t)= tcj�1 (t)+xy
�1tcj (t)

and
gC (t) [fC (t)]

j
= tgC (t) [fC (t)]

j�1
+xy�1tgC (t) [fC (t)]

j
:

Hence we have fC (t)= t
1�xy�1t : Thus, the Riordan representation of matrix C [x; y]

is

C [x; y] =

�
1�s�kxy�1t+z�k(xy�1t)

2

(Ap(1;�k;c)�z�kAp(0;�k;c)xy�1t)(1�xy�1t)
; t
1�xy�1t

�
:

From [7], we have that � [x; y] =
�

1
1�xyt ;

y2t
1�xyt

�
: Then

H [x; y] �C [x; y]

=
�
Ap(1;�k;c)�z�kAp(0;�k;c)xyt

1�s�kxyt+z�k(xyt)2
; y2t

�
�
�

1�s�kxy�1t+z�k(xy�1t)
2

(Ap(1;�k;c)�z�kAp(0;�k;c)xy�1t)(1�xy�1t)
; t
1�xy�1t

�
=

�
(Ap(1;�k;c)�z�kAp(0;�k;c)xyt)

�
1�s�kxy�1y2t+z�k(xy�1y2t)

2
�

(1�s�kxyt+z�k(xyt)2)(Ap(1;�k;c)�z�kAp(0;�k;c)xy�1y2t)(1�xy�1y2t)
; y2t
1�xy�1y2t

�
=

�
1

1�xyt ;
y2t

1�xyt

�
= � [x; y] :

Thus the proof is complete. �

Now, we consider some special cases.
If we take Ap(1;�k;c) = 1; Ap(0;�k;c) = 0; s�k = �1; z�k = �1; the matrix

H [x; y] is reduced to the Fibonacci matrix F [x; y]. In Theorem 1, taking F [x; y]
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instead of H [x; y] gives us the matrix L [x; y] such that � [x; y] = F [x; y] � L [x; y]
from [7]. So the matrix L [x; y] is a special case of C [x; y] : When Ap(1;�k;c) = 1;
Ap(0;�k;c) = 0; s�k = �2; z�k = �1; the matrix H [x; y] is reduced to the Pell
matrix S [x; y] de�ned in [7]. Also taking S [x; y] instead of H [x; y] ; we get the
matrix M [x; y] such that � [x; y] = S [x; y] � M [x; y] given in [7]. The matrix
M [x; y] is a special case of the matrix C [x; y] :
By taking the �nite matrices Cn [x; y] = [cn [x; y]]ij and Hn [x; y] = [hn [x; y]]ij ,

we give the following result.

Corollary 1.
iX

r=1

�
i� 1
r � 1

�
xi�ryi+r�2 =

iX
j=1

 
Ap(i�j+1;�k;c)x

i�jyi+j�2

 
jX

m=1

cim

!!
where i; j = 1; 2; :::; n and cim is the (i;m)�element of Cn [x; y] :

Proof. Considering the n� n Pascal matrix �n [x; y] and since � [x; y] = H [x; y] �
C [x; y] from Theorem 1, we have �n [x; y] = Hn [x; y]Cn [x; y] and �n [x; y]En =
Hn [x; y]Cn [x; y]En, where En = (1; 1; :::; 1)

T . Therefore, we obtain the desired
result. �

Corollary 2. For n > 0 and i; j = 1; 2; :::; n;�
n� 1
r � 1

�
=

nX
j=r

�
Ap(n�j+1;�k;c)

Ap(1;�k;c)

���
j � 1
r � 1

�
�
Ap(2;�k;c)

Ap(1;�k;c)

�
j � 2
r � 1

�

�z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

��
j � 3
r � 1

�
�z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�  n�3X
m=1

�
n�m� 3
r � 1

��
z�kAp(0;�k;c)

Ap(1;�k;c)

�m!!
:

Proof. Use x = y = 1 in the equality �n [x; y] = Hn [x; y] � Cn [x; y]. �

If r = 1 in the previous corollary, we have
nX
j=1

�
Ap(n�j+1;�k;c)
Ap(1;�k;c)

��
1� Ap(2;�k;c)

Ap(1;�k;c)
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�

� z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�  n�3X
m=1

�
z�kAp(0;�k;c)
Ap(1;�k;c)

�m!!
= 1

For example consider the case Ap(1;�k;c) = 2; Ap(0;�k;c) = 0: For k = 3; p = 1

and q = �1; the sequence
�
Ap(n;�k;c)

	
is reduced to the Fibonacci subsequence

fF�3ng. By Corollary 2, we obtain�
n� 1
r � 1

�
=

nX
j=r

�
F�3(n�j+1)

F�3

���
j � 1
r � 1

�
� F�6
F�3

�
j � 2
r � 1

�
�
�
j � 3
r � 1

��
:

Now we give an another factorization of the generalized Pascal matrix with a
matrix associated with the sequence

�
Ap(n;�k;c)

	
: First, for two nonzero real num-

bers x and y; we de�ne the in�nite matrix C 0 [x; y] =
h
c0 [x; y]ij

i
with c0 [x; y]ij =�

1
Ap(1;�k;c)

�
i�1
j�1
�
� Ap(2;�k;c)

A2
p(1;�k;c)

�
i�1
j

�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

��
i�1
j+1

�
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� z�k
�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A3
p(1;�k;c)

�
�
 
i�3X
m=1

�
i�1

j+m+1

� � z�kAp(0;�k;c)
Ap(1;�k;c)

�m!!
xi�jyi+j�2

if i � j and 0 otherwise.
Second we de�ne the in�nite matrix H 0 [x; y] =

h
h0 [x; y]ij

i
with h0 [x; y]ij =

Ap(i�j+1;�k;c)x
i�jyj�i if i � j and 0 otherwise. Then we can give the following

theorem.

Theorem 2.

� [x; y] = C 0 [x; y] �H 0 [x; y] :

Proof. From Theorem 1, the Riordan representation of the matrix C [x; y] is known.
Thus we get the Riordan representations of C 0 [x; y] and H 0 [x; y] as following:

C 0 [x; y] =

�
1�(2+s�k)xyt+(1+s�k+z�k)(xyt)2

(Ap(1;�k;c)�(Ap(1;�k;c)+z�kAp(0;�k;c))xyt)(1�xyt)2
; y2t
1�xyt

�
and

H 0 [x; y] =

 
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t
1� s�kxy�1t+ z�k (xy�1t)2

; t

!
:

From property (R1), we have

C 0 [x; y] �H 0 [x; y]

=

�
1�(2+s�k)xyt+(1+s�k+z�k)(xyt)2

(Ap(1;�k;c)�(Ap(1;�k;c)+z�kAp(0;�k;c))xyt)(1�xyt)2
; y2t
1�xyt

�
�
�
Ap(1;�k;c)�z�kAp(0;�k;c)xy

�1t

1�s�kxy�1t+z�k(xy�1t)2
; t
�

=

0B@ (1�(2+s�k)xyt+(1+s�k+z�k)(xyt)2)
�
Ap(1;�k;c)�z�kAp(0;�k;c)xy

�1 y2t
1�xyt

�
(Ap(1;�k;c)�(Ap(1;�k;c)+z�kAp(0;�k;c))xyt)(1�xyt)2

 
1�s�kxy�1

y2t
1�xyt+z�k

�
xy�1

y2t
1�xyt

�2! ; y2t
1�xyt

1CA
=

�
1

1�xyt ;
y2t

1�xyt

�
= � [x; y] :

Thus the proof is complete. �

Considering the �nite matrices C 0n [x; y] = [c
0
n [x; y]]ij and H

0
n [x; y] = [h

0
n [x; y]]ij

we can give the following result.

Corollary 3.

iX
r=1

�
i� 1
r � 1

�
xi�ryi+r�2 =

iX
j=1

 
c0ij

 
jX

m=1

Ap(m;�k;c)x
m�1y1�m

!!

where i; j = 1; 2; :::; n and c0ij is the (i; j)�element of C 0n [x; y] :

Proof. Since � [x; y] = C 0 [x; y]�H 0 [x; y] in Theorem 2, we have �n [x; y] = C 0n [x; y]H
0
n [x; y]

and �n [x; y]En = C 0n [x; y]H
0
n [x; y]En where En = (1; 1; :::; 1)

T
: So we obtain the

desired result. �
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Corollary 4. For n > 0 and i; j = 1; 2; :::; n;�
n� 1
r � 1

�
=

nX
j=r

��
n� 1
j � 1

�
�
Ap(2;�k;c)

Ap(1;�k;c)

�
n� 1
j

�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�
��

n� 1
j + 1

�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�
� 

n�3X
m=1

�
n� 1

j +m+ 1

��
z�kAp(0;�k;c)

Ap(1;�k;c)

�m! Ap(j�r+1;�k;c)
Ap(1;�k;c)

:

Proof. By taking x = y = 1 in � [x; y] = C 0 [x; y]�H 0 [x; y] ; we have the conclusion.
�

Particularly, if we take r = 1 in Corollary 4, we get
nX
j=1

��
n� 1
j � 1

�
�
Ap(2;�k;c)

Ap(1;�k;c)

�
n� 1
j

�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�
��

n� 1
j + 1

�
� z�k

�
Ap(0;�k;c)Ap(2;�k;c)�A2

p(1;�k;c)
A2
p(1;�k;c)

�
�

n�3X
m=1

�
n� 1

j +m+ 1

� �
z�kAp(0;�k;c)

Ap(1;�k;c)

�m�1! Ap(j;�k;c)
Ap(1;�k;c)

= 1:

As an example, consider the case Ap(1;�k;c) = �2; Ap(0;�k;c) = 0: When k = 2;
p = 2 and q = �1; the sequence

�
Ap(n;�k;c)

	
is reduced to the Pell subsequence

fP�2ng : By Corollary 4, we obtain�
n� 1
r � 1

�
=

nX
j=r

��
n� 1
j � 1

�
�
Ap(2;�2;c)

Ap(1;�2;c)

�
n� 1
j

�
� z�2

�
Ap(0;�k;c)Ap(2;�2;c)�A2

p(1;�2;c)
A2
p(1;�2;c)

�

�
�
n� 1
j + 1

�
� z�2

 
n�3X
m=1

�
n� 1

j +m+ 1

��
z�2Ap(0;�2;c)

Ap(1;�2;c)

�m!! Ap(j�r+1;�2;c)
Ap(1;�2;c)

=
nX
j=r

��
n� 1
j � 1

�
� P�4
P�2

�
n� 1
j

�
+

�
n� 1
j + 1

��
P�2(j�r+1)

P�2
:

From property (R3), we can �nd the inverses of H [x; y] ; C [x; y] and C 0 [x; y] :
Using the computation of the inverse of � [x; y] from [7], we can give the next two
results.

Lemma 1. The inverses of matrices H [x; y] ; C [x; y] ; C 0 [x; y] and H 0 [x; y] are
given by

H [x; y]
�1
=

 
1� s�kxy�1t+ z�k

�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

� ; y�2t! ;
C [x; y]

�1
=

 
Ap(1;�k;c) +

�
Ap(1;�k;c) � z�kAp(0;�k;c)

�
xy�1t

1 + (2� s�k)xy�1t+ (1� s�k + z�k) (xy�1t)2
;

t

1 + xy�1t

!
;
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C 0 [x; y]
�1
=

0@ Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t�
1� s�kxy�1t+ z�k (xy�1t)2

�
(1 + xy�1t)

;
t

y2 + xyt

1A
and

H 0 [x; y]
�1
=

 
1� s�kxy�1t+ z�k

�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

� ; t! :
Proof. First, we look at the matrix H [x; y] : Since fH (t) = y2t; we get fH (t) =

y�2t: Substituting fH (t) in
�
gH
�
fH (t)

���1
; we obtain

1

gH
�
fH (t)

� = 1� s�kxy�1t+ z�k
�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

�
(1� xy�1t)

;

and hence, the Riordan representation of H [x; y]�1 is

H [x; y]
�1
=

 
1� s�kxy�1t+ z�k

�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

� ; y�2t! :
Secondly, since fC (t) = t

1�xy�1t for the matrix C [x; y] ; we get fC (t) = t
�
1 + xy�1t

��1
and

1

gC
�
fC (t)

� = Ap(1;�k;c) +
�
Ap(1;�k;c) � z�kAp(0;�k;c)

�
xy�1t

1 + (2� s�k)xy�1t+ (1� s�k + z�k) (xy�1t)2
:

Thus, the Riordan representation of C [x; y]�1 is

C [x; y]
�1
=

 
Ap(1;�k;c) +

�
Ap(1;�k;c) � z�kAp(0;�k;c)

�
xy�1t

1 + (2� s�k)xy�1t+ (1� s�k + z�k) (xy�1t)2
;

t

1 + xy�1t

!
:

Thirdly, since fC0 (t) = y2t
1�xyt for the matrix C

0 [x; y] ; we get fC0 (t) = t
�
y2 + xyt

��1
and

1

gC0
�
fC0 (t)

� = Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t�
1� s�kxy�1t+ z�k (xy�1t)2

�
(1 + xy�1t)

:

Thus the Riordan representation of C 0 [x; y]�1 is

C 0 [x; y]
�1
=

0@ Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t�
1� s�kxy�1t+ z�k (xy�1t)2

�
(1 + xy�1t)

;
t

y2 + xyt

1A :
Finally, since fH0 (t) = t for the matrix H 0 [x; y] ; we get fH0 (t) = t and

1

gH0
�
fH0 (t)

� = 1� s�kxy�1t+ z�k
�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

� :
Thus the Riordan representation of C 0 [x; y]�1 is

H 0 [x; y]
�1
=

 
1� s�kxy�1t+ z�k

�
xy�1t

�2�
Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t

� ; t! :
�



10 EMRAH KILIÇ, NESE OMUR, AND GULFER TATAR

When Ap(1;�k;c) = 1; Ap(0;�k;c) = 0; s�k = �1; z�k = �1; the inverses of H [x; y]
and C [x; y] are the inverses of the in�nite generalized Fibonacci matrix F [x; y]
and the matrix L [x; y] ; respectively. Also when Ap(1;�k;c) = 1; Ap(0;�k;c) = 0;
s�k = �2; z�k = �1; the inverses of H [x; y] and C [x; y] are the inverses of the
generalized Pell matrix S [x; y] and the matrix M [x; y] ; respectively.

Corollary 5. For the generalized Pascal matrix � [x; y] ;

� [x; y]
�1
= C [x; y]

�1 �H [x; y]�1 (2.2)

and
� [x; y]

�1
= H 0 [x; y]

�1 � C 0 [x; y]�1 : (2.3)

Proof. From [7], we have the inverse of � [x; y] as

� [x; y]
�1
=

�
1

1 + xy�1t
;

t

y2 + xyt

�
: (2.4)

From Theorems 1 and 2, we know that � [x; y] = H [x; y] � C [x; y] ; � [x; y] =
C 0 [x; y] �H 0 [x; y] ; respectively. Thus the proof is complete. �
From Lemma 1 and (2:1), we have the following result.

Corollary 6. For n � 1;

(i) H [x; y]
n
=

 
nY

m=1

Ap(1;�k;c)�z�kAp(0;�k;c)xy
2m�1t

1�s�kxy2m�1t+z�k(xy2m�1t)2
; y2n t

!
;

(ii) H [x; y]
�n
=

 
nY

m=1

1�s�kxy�2m+1t+z�k(xy�2m+1t)
2

Ap(1;�k;c)�z�kAp(0;�k;c)xy�2m+1t ; y
�2n t

!
:

Proof. The result follows from induction, using

H [x; y] =

 
Ap(1;�k;c) � z�kAp(0;�k;c)xyt
1� s�kxyt+ z�k (xyt)2

; y2t

!
and

H [x; y]
�1
=

 
1� s�kxy�1t+ z�kx2y�2t2�

Ap(1;�k;c) � z�kAp(0;�k;c)xy�1t
� ; y�2t! :

�
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