RIORDAN GROUP APPROACHES IN MATRIX
FACTORIZATIONS

EMRAH KILIC, NESE OMUR, AND GULFER TATAR

ABSTRACT. In this paper, we consider an arbitrary binary polynomial sequence
{An} and then give a lower triangular matrix representation of this sequence.
As main result, we obtain a factorization of the infinite generalized Pascal
matrix in terms of this new matrix, using a Riordan group approach. Further
some interesting results and applications are derived.

1. INTRODUCTION

For n > 0, the n x n Pascal matrix P,, = [p;;] is defined as follows [5]:

i—1 op . .
[ iz
* 0 otherwise.

The authors [1] are the first to give matrix representations of the Pascal triangle.
In [12], for a nonzero real x, the Pascal matrices P, [z] = [P, (z;1,7)] and Q, [z] =
[@n (x;4, 7)] are generalized as follows

Tt i
P, (z:i,§) = (-1 =Js
(234,5) { 0 otherwise,
and
(i—l i+j—2 ifi>
i j_l)w ifi > j,
Qn (@:1,) { 0 otherwise.

Further in [13], the authors generalize the Pascal matrices P, [z] and @, [z] for

two nonzero real numbers x and y as follows

(ifl i—J o 0+7—2 ifi>4
o j_1)$ Yy Ir?-=7,
¢z, y]zg { 0 otherwise.

The Fibonacci and Lucas sequences have been discussed in so many studies.
Besides, various generalizations and matrix representations of these sequences have
been also introduced and investigated.

For nonnegative integers A and B such that A% + 4B # 0, the generalized
Fibonacci and Lucas type sequences {U, (A, B)} and {V, (A4, B)} are defined by
forn >0

UIL+1 (A7 B) = AU, (A, B) + BUp—1 (A, B) )
Vi1 (A,B) = AV, (A,B)+ BV,_1(A,B)
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where Uy (A,B) =0, U; (A,B) =1 and Vy (A, B) =2, V4 (4, B) = A, respectively.
For example, U, (1,1) = F), (nth Fibonacci number) and V,, (1,1) = L,, (nth Lucas
number).

For the polynomial versions of generalized Fibonacci and Lucas numbers, we refer
to [2]. Even more general cases of these polynomials are considered in [4], where two
of us define the polynomial sequence {A,, (a,b;p, q) (z)} (briefly {4, (x)}) satisfying

A () = p (@) Ay () — g (2) Aus () (L1)

with Ag (z) = a (), A1 (z) = b(z), where a, b, p,q are polynomials of z with real
coefficients. In their study, the authors of [4] show that for n > 0, any integer k
and n = ¢ (mod |k|), the sequence {A, } satisfies the following recursion:

Ap(n—i—l,k,c) = SkAp(n,k,c) - ZkAp(n—l,k7c)
where s = of + 8*, 2z = ¢* and p(n,k,¢) = nk + ¢ (c constant) and «, 5 =
(p +p? - 4<J) /2.
Further, in [6], the authors define the n x n Fibonacci matrix F,, = [f;;] in the
form

[fis] = Fijyr ifi—j+1>0,
EE 0 otherwise,

where F), is the nth Fibonacci number. This was generalized in [7], where the

authors introduce the n x n generalized Fibonacci matrix F [z,y], = [ [z, yl; j] as

shown o
_ | Fijpaiy™i=? ifi >,
oyl = { 0 otherwise.
Also the authors define the infinite generalized Fibonacci matrix in the form
1 0 0
TY y2 0 ..
Flz,yl = 222y xyd oyt L | (1.2)

and the infinite generalized Pell matrix by

1 0 0
2zy y? 0 ..
Slz,yl = 5x2y? 2xy® oyt |- (1.3)

Similarly, they define the infinite matrices L [z,y] = [l [z, Y] ] and M [z,y] =

[m [z, Y] ”} as follows: ’
sl = (7D = (7 = (2D) a9y (1.4)

and
m [x)y]ij = ((;j) - 2(;:?) - (;:?1))) a' Iy (1.5)

They also show that the matrices F[z,y], L[z,y], S[z,y] and M [z,y] satisfy
O [z,y] = Flz,y] x Lz,y] and @ [z,y] = S[z,y] * M [z,y] where ® [z,y] is the
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infinite generalized Pascal matrix defined by

1 0 0
Ty y? 0o ..
@ [z,y] = 22y 2z 4t L |- (1.6)

In [14],the authors define an n x n matrix R,, = [r; ;], where

i1 i—1 i1
rij = (521) = () = (), (L.7)
which they use to show that P, = R, F,, and the following factorization
(:“L:%) = Fn77”+1 + (n - 2) an'r‘ + % (n2 —b5n + 2) anrfl

n—3
n—1 n (n—k)(n—k—1)
+ kz; (i) [2 Tk %} Fy—rq1.

where F,, and P, are defined as before.

St&nicd [9] looks at a more general case of the results of [6, 14]: he considers the
n X n matrix U, = (u;;) in terms of the sequence {U,, (A, B)}, where

Wi — Ui—j+1 leZj,
N 0 otherwise.

Then the author give the factorization of any matrix in terms of the matrix U, .

In [8], the Riordan group was defined as follows: Let R = [Tij]ipo be an in-
finite matrix whose entries are complex numbers and ¢; (t) = Y 7% 7,,it" be the
generating function of the ith column of R. If ¢; (t) = g (¢) [f (¢)]" where

gt)=1+git+got® +gst® +--, and f(t) =t + fot> + fst> + -,

then R is a Riordan matrix. When R denotes the set of Riordan matrices, the set
R is a group under matrix multiplication %, with the following properties:

(Ra) (g (&), f (@) (h(t),L(2) = (g(&)h(f@),L(f (1))

(R2) I = (1,¢%) is the identity element.

(R3) The inverse of R is given by R™! = (S‘(fl(t))’f(t)> , where f(t) is the

compositional inverse of f (t), ie., f (f(t)) = F(f (1)) =t

(R4) If (ag, a1, az, )T is a column vector with generating function A (t), then

multiplying R = (g (t), f (t)) on the right by this column vector yields a
column vector with generating function B (t) = g (t) A(f (¢)).

In [6], the authors generalize the infinite Pascal, Fibonacci and Pell matrices and
then give factorizations of the infinite generalized Pascal matrix by using Riordan
method.

Let R,, = [r; ;] be the n x n matrix given as before. In [10], using the equations
P, = R,F, and P,E, = R, F,E, for the n x n Fibonacci matrix F,, = [f;;], the
n x n Pascal matrix P, = [p;;] and the n x 1 matrix E,, = (1,1, ..., 1T, the authors
show that

n—&—l:l;%[12+(n+1)l—n2]Fl+2

where 1 < 4,5 <n and F,, is the nth Fibonacci number.
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In this paper, we consider the arbitrary binary polynomial sequence {A,} and
then give a lower triangular matrix representation of this sequence. By the de-
finition of Riordan matrices, we obtain a factorization of the infinite generalized
Pascal matrix in terms of this new matrix. Further some interesting results and
applications are derived.

2. A FACTORIZATION OF THE GENERALIZED PASCAL MATRIX

For any two nonzero real variables x and y, an infinite matrix H [z, y] = [h [z, y]; j}

is defined as follows:
[ Atk Ty i > g,
hiz,yli; = { 0 otherwise,

where {Ap(n+17ik7c)} and p (n + 1, £k, ¢) are defined as before.
Clearly the matrix H [z,y] is of the form

Ap(1,4k,e) 0 0
Ap(2,4k,0)TY Ap(ldtk,C)y2 0

H [z, y] = Ap3 k)Y Apakory®  Apa tkoyt

Now we give the Riordan representation of the infinite matrix H [z,y]. Let the

Riordan representation of H [z,y] be (gm (t), fu (¢)) . Here the generating function

of the jth column of H [z,y] is ¢; (t) = gu (t) [fm (¢)]” . Since the first column vector
2

of H [x,y] is (Ap(l,ik)c),Ap(z)ik,c)my,Ap(3’ik’c)a: 2, ...)T, we can write
g () = Apire)tApe kTt + Ay p0 T Y+
—sapaytgy (1) = —sixdp, sk @Yt — SipApo ke T Yt =5tk dpi ano’ Y tt —
kY0 (1) = ek Ap( sk @Y P+ 2ak Ap, a0 B Y P H 21k Aps ar0 T Yt + .

By summing the above three equalities side by side, we get
Ap(1,4k,e) — 2k Ap0,+k,0)TYL
1 — sepayt + 2ok (zyt)?

gu () =

Since h[z,y];; = y*h[z,yl;_, ;_, for j > 2, we have that ¢; (t) = y*tc;—1 (t) and

g ) [fa ®F = v2tgn &) [fa #))’ " . Hence we get fu (t) = yt. Consequently
the Riordan representation of H [z,y] is given by

Ap(1,4k,e) — 2k Ap(0,4k,0)TYL
Hlz,y) = | —2=m) POSRATE WPt (2.1)
1 — stpayt + 24k (ayt)

For two nonzero real numbers x and y, define the infinite matrix C' [z, y] = [c [z, ], J}

' i1y Apaiihe) (i—2
with ¢ [z,y];; = (A,,(fm(;l) — e (0T)

2
p(1,%k,c)
2 2
— Zig Ap©.2k0) Ap2.th0) TAp (L dRe) (143) — 2 Ap0,£k.0) Ap2,2k,0) = AP, dk,0)
3 H 3
Ap(1 ke Jj—1 A2 ik
—3 m
i—m—3\ [ Z+kAp,+k,c) G—d i g s . .
X E m = ni0,Eke) Jyd=t if § > 4 an herwise.
( j—1 ) Ay ihe) My i > j and 0 otherwise
m=1

We now give the following theorem.
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Theorem 1.
®[z,y] = H [x,y] x C[z,y].

Proof. Since C [z,y] is a Riordan matrix, we write C [z, y] = (g9¢ (t), fc (t)) . Con-
sidering the first column vector of C [z,y], we have

gc (t)
_ 1 1 Ap(Z,:tk,c) —1
= + — T t+
Ap(1,£k,0) Aprtke) A2 iko y
2
1 Ap(2,4k,c) Ap0,4k,0) Ap(2,2k,0) " A1, £k,0) —1,\2
— —z T t) +
(Apu,ifc,c) A2 i  CER Ao k0 (z971)
2
1 Ap2,+k,0) Ap(0,4k,0)Ap2,+k,0) A1 tk.0) —1,\3
(Aml«ik@ A?)(l‘:tlc,c) +k Ai(l,ik‘c) ( y )
_ _ 2 A, ; -1
= (14+ay t+ (xy 't —|—) L — p@ERS) gyl ) —
( y ( y ) Ap(1,£k,e) Ai(l,:tk‘c) y
—_ —1,\2 Apo,£k,0)Ap(2, £r,0)— A2 B —1,\2
2ik (1 oyt (ay )+ ) < (0, 4k ¢) :é ko) APtk .0) (wy~'t)
p(1,%k,c)
1+ (zikAp(O +k p)) “lyy 235 A2 0, k.0 ( _1t)2 +
— =" —_— P ER.C) x e
Ap(1.£h.c) 4 A, k0) 4

( 1 ) 1—sikzy71t+zik(zy71t)2
-y~ 't (Ap(l,j:lc,c)7ZikAp(0,j:k,c)wy_lt) ’
Let the generating function of the jth column of C [z, y] be ¢; (t) = g¢ () [fo @) .

Considering

clz, y}ij =c|z, y]i—l,j—l +ay !

for j > 2, we obtain

C[xay]i_l,j

cj (t) = tej_y1 (t) +ay tte; (1)
and
go () [fo O = tge (1) [fe OF " +ay " tge () [fo @) -

Hence we have f¢ (t) :#yflt' Thus, the Riordan representation of matrix C [z, y]
is

o= (gt

p(1,4k,c) —zikAp(o,ik,c)iy_1t)(1—93y_1t) P l-ay 't

From [7], we have that ® [z,y] = ( L Yt ) . Then

l—zyt’ 1—zyt
H [z,y] «C [z,y]

_ 1,02
_ (Ap(l,ik,,c)_ZikAp(O,:tk,c)l‘yt y2t> % 1—s4pxy 1t+2ik(ly lt) t
1—stpayttzee(wyt)? ’ (Ap(1,4h,0)— 2k Ap(o, 4 k,0)Ty~ 1t ) (1—zy—1t) " 1—zy =1t
_ _ 2
(Ap(1,ik,c)—ZikAp(o,ik,c)xyt)(1—Sik$y YyPttzag(zy 1y2t)) o2t
(1—sikmyt+zik(:cyt)Z)(Ap(lik,C)—zikAp(oik,c)ryflyzt)(l—zyflyzt)7 1—zy=ly?t

1 2t
= (1—myt7 1Ezyt> =0 [:E7 y} .
Thus the proof is complete. [

Now, we consider some special cases.
If we take Ap1 +k,e) = 1, Apo,4k,e) = 0, s21 = £1, 24 = —1, the matrix
H [z,y] is reduced to the Fibonacci matrix F [z,y]. In Theorem 1, taking F [z, y]
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instead of H [z,y] gives us the matrix L [z, y] such that ® [z,y] = F [z,y] * L [z, y]
from [7]. So the matrix L [z,y] is a special case of C[z,y]. When A, 440 = 1,
Ap,4k,e) = 0, 81 = 2, 244 = —1, the matrix H [z,y] is reduced to the Pell
matrix S [z,y] defined in [7]. Also taking S [z,y] instead of H [z,y], we get the
matrix M [z,y] such that ®[z,y] = S[z,y] * M [r,y] given in [7]. The matrix
M [z,y] is a special case of the matrix C [z,y].

By taking the finite matrices Cy, [z, y] = [cn [2,9]];; and H,, [z, y] = [hn [2, 9],
we give the following result.

Corollary 1.

et m(§)

r=1 =1 m=1

where 1,5 = 1,2, ...,n and ¢y, is the (i,m) —element of Cy, [x,y].

Proof. Considering the n x n Pascal matrix ®,, [z,y] and since ® [z,y] = H [z, y] *
C'[z,y] from Theorem 1, we have @, [z,y] = H, [z,y] Cy, [z,y] and @, [z,y] E,, =
H, [z,y] Cy [z,y] En, where E, = (1,1,...,1)". Therefore, we obtain the desired

result. O
Corollary 2. Forn >0 andi,j=1,2,...,n,

(nl)_zn:<z4(n J-‘rlikc)) <<]1> Qikc)(jQ)

r—1 j=r Ap(l:tkc r—1 p(1,%k,c) r—1

Ap,£k,0) Ap(2, £8,0) = An1 L10.0) j - 3
—Z4k A2
p(l,£k,c) —
n 3 m
—Z+k (AP(Uvika)AP(ZikYC)A?)(l,j:k,c) n -m-= 3) (zikAP(Ovikvc)>
A2 B :
p(1,£k,c) 1 r 1 Ap(l,ik,c)

Proof. Use x =y = 1 in the equality ® H, [x,y] * Cy [z,y]. O

If r =1 in the previous corollary, we have

n
Ap(n—j+1,4k,c) 1— Ap@2,tke) Zin A:D(Ovika)AP(Zvika)_A;zz:(l,ik,u)
Z Ap(1.tk.0) Ap(1.£k.0) A

j=1 p(1,£k,c)
2 n—3 m
Ap(0,£k,0) Ap(2,4k,0) " A1, £k.0) 245 Ap0,4k,c) -1
— Zik iz Ao ine =
p(1,%k,c) p(1,%k,c)
m=1
For example consider the case Apq +4.c) = 2, Apo,4k,e) = 0. For k =3, p=1
and ¢ = —1, the sequence {Ap(n’ik,c)} is reduced to the Fibonacci subsequence

{F4i3n}. By Corollary 2, we obtain
n—1) _ i Fign—jt1) J=1\ Fie(j—2\ (73
r—1 = Fis r—1) Fiz\r—1 r—1/)°

Now we give an another factorization of the generalized Pascal matrix with a
matrix associated with the sequence {Ap(n7ik7c)} . First, for two nonzero real num-

bers = and y, we define the infinite matrix C’ [z,y] = {c’ [x,y]ij] with ¢ [z,y];; =

1 (z}l) Ayt (ifl) — Zax Ap(o,4k,0) Ap2.2k.0) —AD(1 1h.e) (z}l)
Ap(1,£k,e) V—1 A2 J A3 G+l

p(1l,%tk,c) p(1,%tk,c)
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i3
. Apo. ko) Ape ko = Apa, ke | Z( i1 )(ZikAp(O,ik,c)>7n pi—dyiti=?
AV ko) Jjt+m+1 Ap,+k,e)

m=1

if ¢ > j and 0 otherwise.

Second we define the infinite matrix H' [z,y] = [h' [x,y}ij] with A’ [z,y];; =
Ap(i—ji1,4k,e)T 7y’ 7" if © > j and 0 otherwise. Then we can give the following
theorem.

Theorem 2.
O [z,y] = C" [x,y]« H'[z,y].

Proof. From Theorem 1, the Riordan representation of the matrix C' [z, y] is known.
Thus we get the Riordan representations of C’ [z,y] and H' [z, y] as following:

' [l‘ y] _ 1—(2454)zyt+(1+str+24r)(zyt)? 2t
’ (Ap(l,ik,c)—(Ap<1,ik,c)+zik14p(o,ik,c))xyt)(l—ﬂﬂyt)Q’ 1-ayt

and

A — 241A xy 1t
H' [z,y] = p(1,£k,c) +kAp(0,4k,c) LY ).
1 —sypzy=" + z4p (xy~—1t)

From property (R1), we have

C' [,y H' [z, y]

1—(24s1p)yt+(I+ssntzer)(@yt)? 2t
(Apu,ik,u)—(Ap(1,ik,c)+zik~Ap(o,ik,c))ﬂfyt)(1—372175)2 P l-ayt

% Ap(1,£k,0) =21k Ap(0, Lr,c)TY 't t
1—sepay Ltttz (zy—1t)2

2
_ t
(1*(2+Sj;k,)Iyt+(1+5j;k+zj:k)(myt)Q) (Ap(l,j:k,c)7Zj:kAp(0,j:k,c)Iy ! 1Emyt)

1 t
= (1 'ryt’lymyt> (I)[x7y}

Thus the proof is complete. O

Considering the finite matrices C7, [z, y] = [¢, [z,y]];; and H, [z, y] = [I;, [2,y]];;
we can give the following result.

Corollary 3.
i <z - 1>$i—7-yi+7"—2 _ i (c’»» (i A =1 1—m>>
Zo\r - 1 P ij 2 p(m,£k,c) Y

where i, j = 1,2,...,n and c; is the (i, j) —element of C}, [x,y] .

Proof. Since ® [ Y ] C' [z, y]*H' [z, y] in Theorem 2, we have ®,, [z,y] = C), [x,y] H], [z
and ®,, [z,y] B, = C!, [z,y] H., [x,y] E, where E, = (1,1,...,1)" . So we obtain the

n

desired result. O

Yl

2 y’t y?t T 1-ayt
(A1) = (Ap(1 .0 T2k Ap(0, 21,0 ) 2yt) (L=ayt)? | 1=sinay =1 T2 Heik (”’971 1—wyt>
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Corollary 4. Forn >0 andi,j =1,2,...,n,

n
(n B 1) = Z <<n o 1> _ w (n 7 1) — Zik (AP(O,ik,c)A:éz,ik,c)_Ag(l,ik,c)> %
r—1 — \\J—1 Apitke) \ J P(1,%k,e)
n—1 Ap(0, k8,0 Ap(2,2k,0) ~Ap(1.1h.c)
- e X
(] + 1) ok ( Ao k0
-3
nz ( n—1 ) (zikAp(O,:l:k,c)>m Ap(—r41,4k,c)
i\ tmtl Ap(1,£k,c) Ap(1,4k,c)

Proof. By takingz =y =11in ®[z,y] = C' [z,y]* H' [z, 3], we have the conclusion.
O

Particularly, if we take » = 1 in Corollary 4, we get

n
Z <<7;: i) . A;D(Q,ik,C) <n _ 1> — 2p <Ap(O,ik,c)AApézik.c)_AZ(Lik,c)) %

j=1 Ap(lyik’c) J p(L,%k,c)

n—1 — 24k Ap(O.,ik,c)Ap(2,ik,c)*Afa(l,ik,c) >
. 2
j+1 Ap ko)

5 ( n—1 ) (%m,ﬂcw)m—l Ay k)
m=1 Jtm+1 Ap(lyiknc) Ap(l,:tk,c)

= 1

As an example, consider the case Ay +r.c) = £2, Ay 4k,c) = 0. When k = 2,
p = 2 and ¢ = —1, the sequence {Ap(n’ik’c)} is reduced to the Pell subsequence
{P4ian}. By Corollary 4, we obtain

(17))

_ En: ((n - 1) -~ Ap2,£2,0) (n - 1) — 24g (Ap<u,ik,c>Ap2(2,iz,c>Ai(l,iz,@)
J— 1 Ap(l,j:?,c) J Al’(ldﬂvc)

j=r
(151) - ”f(,n—l ) (atos20)")) Apmrsnsno
]+1 1 j+m+1 Ap(l,:I:Q,c) Ap(l,:l:2,c)
(D) () () B
j=r .7_1 Pi2 ,] ]+1 Pig ’

From property (Rs), we can find the inverses of H [z,y], C[z,y] and C’ [z,y].
Using the computation of the inverse of ® [z, y] from [7], we can give the next two
results.

Lemma 1. The inverses of matrices H [x,y], Clz,y], C'|z,y] and H' [x,y] are
given by
_ 12
I [a:,y]fl _ 1 —sqepzy Y4 24p (xy 1t) )
(Ap(1te) = 2k Ap(o,2k,e) Y ')

Cla,y ™' = Apt ko) + (Ap,ne) — 24k Ap,th,e)) Ty~ 't | y |
L+ (2= sap) oyt + (1 — spp + za) (wy=11)° L +Hay™ 't
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Ap(1,2k,e) — 24k Ap(0, £k,0)TY 't t
)
(1 — STy 1+ zap (:cy*lt)Q) (14 zy—1t) Y+ ayt

C'a,y) ™' =

and

_ 12
o @ y]_l _ 1— sty Y4 zap (my 1t) a
(Ap(1 the) = 2rAp(0,2k,0)TY 1)

Proof. First, we look at the matrix H [z,y]. Since fx (t) = y°t, we get fy () =
) 21

y~2t. Substituting f (t) in (gu (fg (¢) , we obtain

1 1—sepzy '+ 24p (:vy’lt)2

gu (fu @) a (Ap k) — 24k Ap(o,4k,0)y 1) (1 — zy=1¢)

and hence, the Riordan representation of H [z, y]fl is

_ 1— sepxy Yt + 2 m_1t2
Hlz,y] ' = Ry s (29 21 Ly it
(Ap(1,h,0) = 22k Ap(0,2h,0)TY ')

Secondly, since fo (t) = #y*lt for the matrix C [z, y] , we get f (¢) = ¢ (1 + my’lt)fl
and
1 Ap(l,:l:k:,c) + (Ap(l,:i:k,c) - ZikAp(O,:tk,c)) xy_lt

go (fo () 1+ 2= ser) oyt + (1 — six + 22) (zy 1)
Thus, the Riordan representation of C [z, y]fl is

C [m,y]*l _ Ap(1,4k,e) T (A;n(l,:tk,c) — ZikAp(O,:tk,c)) zy~lt | y |
L+ (2= sep) oyt + (1 — sy + 24p) (xy=18)° L+ ay™'t

Thirdly, since for (t) = ﬁifyt for the matrix C’ [z, y] , we get fo () =t (y* + ayt) !
and

1 Ap(1,2k,e) — 24k Ap(0, £k,0)TY 1t

gor (for (1) - (1 — STy~ M+ 2oy (ﬂﬁy’lt)Q) (1+ xyflt).

Thus the Riordan representation of C” [z, y] ™" is

Ap(1,k,e) — 24k Ap(0, £h,0)TY 1t t
(1 — S4pxy M+ 24y (my*lt)Q) (1+zy—1) Yy + ayt

C'a,y] ' =

Finally, since fz (t) = t for the matrix H' [z,y], we get fp (t) =t and

1 1 — sepzy 't 4 24p (:cy_lt)2

g (Fur (1)) B (Api, k) — 24k Ap(0,4k,c)TY 1)

Thus the Riordan representation of €’ [z,y] ™" is

H' [z,y]7" = ( L sspry” '+ 2 oy ') ) t) .

(Ap,tk,e) — 24k Apo,ak,c)Ty~1t)
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When Ap(l,ik,c) = 1, Ap(&ik,c) = 0, Stk = :|:17 24k = —1, the inverses of H [1‘,y}
and C[z,y] are the inverses of the infinite generalized Fibonacci matrix F [z, y]
and the matrix L [x,y], respectively. Also when A, +r.c) = 1, Apo,44,e) = 0,
Stk = 2, zyp, = —1, the inverses of H [z,y] and C [z,y] are the inverses of the
generalized Pell matrix S [z, y] and the matrix M [z,y], respectively.

Corollary 5. For the generalized Pascal matriz ® [z,y],
® o,y = Cla,y] ™« Hz,y) ' (2.2)
and
® oy = H o,y O [w,y) (2:3)
Proof. From [7], we have the inverse of ® [z,y] as
lry = (1+iy—1t’ yZszyt) (24)

From Theorems 1 and 2, we know that ®[x,y] = H [z,y] * C[z,y], ®lz,y] =
C' [z,y] * H' [z,y], respectively. Thus the proof is complete. O

From Lemma 1 and (2.1), we have the following result.

Corollary 6. Forn > 1,

n
Ap(i,tk,0)— 2tk Ap(o, £ k,c) 0y 1t

(Z) H [‘ryy]n = H 1_Sikxy2m—1t+zik(xy2m—1t)2 ? yz’ﬂ t ’

m=1
n —2m+1 —2m+1,\2
(”) H[l‘ }—n o l1—s4pxy t+zik(zy t) _znt
Y o At ik 22k Ap Lh ooy 231 Y
m=1

Proof. The result follows from induction, using

Ap1,4k,e) — 2k Ap0,+k,0)TYL

Hlz,y) = Yt

1— sqepayt + 244 (a:yt)2
and

1 — sqepzy 't + zepaly2t?

Hlz,y] ' = YTt

(Ap(l,:l:k,c) - ZikAp(O,:I:k,c)xy_lt)
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