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Abstract

In this paper we find a general approach to find closed forms of
sums of products of arbitrary sequences satisfying the same recurrence
with different initial conditions. We apply successfully our technique to
sums of products of such sequences with indices in (arbitrary) arith-
metic progressions. It generalizes many results from literature. We
propose also an extension where the sequences satisfy different recur-
rences.
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1 Introduction

We consider a generic (nondegenerate, that is, δ =
√
p2 − 4q 6= 0) binary

recurrence satisfying

Xn+1 = pXn − qXn−1, n ∈ Z (1)

with some initial conditions. Let α, β be the roots of the equation x2−px+
q = 0, and so, α + β = p, αβ = q, δ = α − β. We associate the companion
Lucas sequence Ln which also satisfies (1) together with L0 = 2, L1 = p,
and so Ln = αn + βn.
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Let {U (j)
n }pj=1 be a set of p binary sequences, all of which will satisfy the

recurrence (1) with some initial conditions, such that the Binet formula for
these sequences is

U (j)
n = Ajα

n +Bjβ
n, n ∈ Z,

where Aj =
U

(j)
1 −U

(j)
0 β

δ , Bj =
U

(j)
0 α−U(j)

1
δ .

For easy notation, we will denote the recurrence {Xn} given by (1) by
{Xn (p, q, a, b)} where a = X0 and b = X1 are initial conditions of it.

Several authors investigated products of two terms of a sequence or prod-
ucts of two sequences, and also, the sums of these products. As a first ex-
ample, note that the sum of square terms of Fibonacci numbers [7, 8, 12]
is

n∑
i=1

F 2
i = FnFn+1.

The sum of products of variable subscripted terms of certain second order
recurrences have been considered by several authors. For example (see [11])

n∑
i=1

FiFi+2 = F2n+1F2n+2 − 1,

n∑
i=1

FiFi+1 = F 2
2n+1 − 1,

n∑
i=1

F2i−1F2i+3 =
(
3F 2

2n+2 − 2F 2
2n+1 + 7n− 1

)
/5.

Certainly, the classical Fibonacci, Fn and Pell numbers Pn are Fn =
Xn (1,−1, 0, 1) and Pn = Xn (2,−1, 0, 1). Generalizations of the above sums
by taking different recurrences and their variable subscripted terms have also
been studied. For example, in [9], the author found

∑n
i=1 FiPi. Melham [10]

looked at the sum of the squares of the sequence {Xn (2, 1, 0, 1)}. Recently,
in [2, 3, 4, 5, 6], the authors gave several formulas for sums of squares of
even and odd Fibonacci, Lucas and Pell-Lucas numbers, and their sums of
products of even and odd subscripted terms. Also the authors of [1] estab-
lished several formulas for sums and alternating sums of products of certain
subscripted terms of recurrences {Xn (p, q, 0, 1)} and {Xn (p, q, 2, p)} .

It is our goal in this paper to propose a general approach for the theory of
closed forms for sums of products of nondegenerate second-order recurrent
sequences, thus generalizing many of these kind of results that the reader
can find scattered throughout the literature.
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2 Main Results

Let P(n) be the power set of {1, 2, . . . , n}, that is the set of all subsets of
{1, 2, . . . , n}. Given a sequence of p functions fj(i), j = 1, . . . , p, for all
M ∈ P(p), we let FM (i) =

∑
`∈M f`(i), F∅(i) = 0, and for simplicity, F (i) =

F{1,...,p}(i) =
∑p

`=1 f`(i). Let us define a set of twisted product sequences,
indexed by the sets M ∈ P(p), in the following way: for a set M ∈ P(p),

we let W
(M)
n be a (M -twisted product) rational sequence satisfying (1) with

the Binet formula

W (M)
n =

∏
j∈M

Aj
∏
k 6∈M

Bk

αn +

∏
j∈M

Bj
∏
k 6∈M

Ak

βn.

Further, we use M̄ = {1, 2, . . . , p} \M , for the complement of the set M

in {1, 2, . . . , p}. We shall first show that W
(M)
n is a rational sequence, even

more precise that W
(M)
n ∈ 1

δ2p−1 Z.

Lemma 1. For any integer n, the twisted product sequences satisfy

W (M̄)
n = qnW

(M)
−n . (2)

Proof. Straightforward using the Binet formula.

Theorem 1. For p, n ∈ Z, we have

W (M)
n ∈ 1

δ2p−1 Z.

Proof. We will prove the claim by induction. First, we let p = 2, and
consider two sequences Un = A1α

n+B1β
n, Vn = A2α

n+B2β
n (for simplicity

of notations). We write the superscript sets as {a, . . .} instead of ({a, . . .}).
The associated twisted product sequences are

W {1,2}n = A1A2α
n +B1B2β

n,

W {1}n = A1B2α
n +B1A2β

n,

W {2}n = A2B1α
n +A1B2β

n,

W ∅n = B1B2α
n +A1A2β

n.

Since our index n runs through the entire set of integers, by Lemma 1, it

will be sufficient to consider only the case of W
{1,2}
n , and W

{1}
n .
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First, using the expressions for A1, A2, B1, B2 in terms of initial condi-
tions of Un, Vn, and simplifying, we get

δ2(A1A2 +B1B2) = 2U1V1 − p(U0V1 + U1V0) + (p2 − 2q)U0V0 ∈ Z
δ2(A1A2α+B1B2β) = pU1V1 − 2q(U1V0 + U0V1) + pqU0V0 ∈ Z.

Further,

δ2(A1B2 +B1A2) = p(U1V0 + V1U0)− 2qU0V0 − 2U1V1 ∈ Z
δ2(A1B2α+B1A2β) = (p2 − 2q)U1V0 − p(U0V0q + U1V1) + 2U0V1q ∈ Z.

Now, let Un ∈ Z and, from the induction step, assume that Vn ∈
1

δ2p−1 Z. As before, writing δ2W
{1,2}
0 , δ2W

{1,2}
1 , δ2W

{1}
0 , δ2W

{1}
1 in terms of

U0, U1, V0, V1, we see that each term in these expressions contains only one

factor based on either V0, or V1 ∈ 1

δ2p−1 Z, and thereforeW
{1,2}
i ,W

{1}
i ∈ 1

δ2p Z,

i = 0, 1. Certainly, since the initial terms of the twisted product sequences

are in 1
δ2p Z, so is W

(M)
n .

We show now our general approach to finding sums of products of recur-
rences.

Theorem 2. Given a set of p functions fj(i), j = 1, . . . , p, such that fj(i)−
f`(i) is a function of j, ` only and it does not depend on i, we have

n∑
i=0

p∏
j=1

U
(j)
fj(i)

=
1

2

∑
M∈P(p)

n∑
i=0

qF (i)−FM (i)W
(M)
2FM (i)−F (i).

Proof. First, we associate to every set M ∈ P(p) a bit string ε of length
p in the usual manner (a 1 bit appears in the bit string if and only if its
corresponding position appears in M , otherwise the bit is 0). For ε ∈ Zp2, we
let wt(ε) to be the Hamming weight of the bit string ε, that is, the number of
1’s in its expression, and supp(ε) = {i1 < i2 < . . . < iwt(ε)} to be the support
of ε (the positions where 1’s appear in ε). Certainly, supp(ε) ⊆ {1, 2, . . . , p}.
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Next, we compute the product

p∏
j=1

U
(j)
fj(i)

=

p∏
j=1

(
Ajα

fj(i) +Bjβ
fj(i)

)
=

∑
ε=(ε1,...,εp)∈Zp2

p∏
j=1

A
εj
j B

1−εj
j αεjfj(i)β(1−εj)fj(i)

=
1

2

∑
ε∈Zp2

 ∏
j∈supp(ε)

∏
k 6∈supp(ε)

AjBkα
∑
j∈supp(ε) fj(i)β

∑
k 6∈supp(ε) fk(i)

+
∏

j∈supp(ε)

∏
k 6∈supp(ε)

AkBjβ
∑
j∈supp(ε) fj(i)α

∑
k 6∈supp(ε) fk(i)



=
1

2

∑
M∈P(p)

(αβ)
∑
j 6∈M fj(i)

∏
j∈M

∏
k 6∈M

AjBkα
∑
j∈M fj(i)−

∑
j 6∈M fj(i)

+
∏
j∈M

∏
k 6∈M

AkBjβ
∑
j∈M fj(i)−

∑
j 6∈M fj(i)


=

1

2

∑
M∈P(p)

qF (i)−FM (i)W
(M)
2FM (i)−F (i),

from which our theorem follows easily.

Obviously, if the sum
∑n

i=0 q
F (i)−FM (i)W

(M)
2FM (i)−F (i) can be simplified,

then the previous theorem takes quite an attractive form. The rest of the
paper is devoted in finding various functions fj for which such a sum can
be computed. Many papers are investigating sums of products of very few
recurrences (mostly two) where the indices are very specific linear functions.
We will attack this case in its full generality here and solve it completely,
by taking fj to be arbitrary linear functions.

Let Wn be our generic sequence satisfying (1) such that Wn = Aαn +
Bβn, and recall that Ln = αn + βn is the companion Lucas sequence.

Lemma 2. For a, b, c, d ∈ Z, we have the generating function

n∑
i=0

xa+biWc+di = xa
qdxb(n+2)Wc+dn − xb(n+1)Wc+d(n+1) − xbqdWc−d +Wc

x2bqd − xbLd + 1
.
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Proof. Using Binet formula for Wn, we obtain

n∑
i=0

xbiWc+di = Aαc
n∑
i=0

(xbαd)i +Bβc
n∑
i=0

(xbβd)i

= Aαc
(xbαd)n+1 − 1

xbαd − 1
+Bβc

(xbβd)n+1 − 1

xbβd − 1

=
Axb(n+2)βdαc+d(n+1) −Axb(n+1)αc+d(n+1) −Axbαcβd +Aαc

+Bxb(n+2)αdβc+d(n+1) −Bxb(n+1)βc+d(n+1) −Bxbβcαd +Bβc

x2b(αβ)d − xb(αd + βd) + 1

=
qdxb(n+2)(Aαc+dn +Bβc+dn)− xb(n+1)(Aαc+d(n+1) +Bβc+d(n+1))

−qdxb(Aαc−d +Bβc−d) + (Aαc +Bβc)

x2bqd − xbLd + 1

=
qdxb(n+2)Wc+dn − xb(n+1)Wc+d(n+1) − xbqdWc−d +Wc

x2bqd − xbLd + 1
.

Taking Wn = un = Xn (p, q, 0, 1) , we reach at the following result:

n∑
i=0

(−1)i ur+4i = (−1)n
υ4n+r+2 + ur−2

v2

where vn = Xn (p, q, 2, p) . One can also find this result in [1, Lemma 5].
Let fj(i) = aj + bji be linear functions. Under these conditions,

F (i)− FM (i) =

p∑
j=1

(aj + bji)−
∑
j∈M

(aj + bji)

=

∑
j 6∈M

aj

+

∑
j 6∈M

bj

 i = a(M̄) + b(M̄)i,

where we use the notations a(M̄) =
∑

j 6∈M aj and b(M̄) =
∑

j 6∈M bj . We shall

also use a(M) =
∑

j∈M aj , b
(M) =

∑
j∈M bj . Further,

2FM (i)− F (i) =
∑
j∈M

(aj + bji)−
∑
j 6∈M

(aj + bji)

=
(
a(M) − a(M̄)

)
+
(
b(M) − b(M̄)

)
i.
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Applying Lemma 2 with x := q, a := a(M̄), b := b(M̄), c := a(M) −
a(M̄), d := b(M) − b(M̄), and using Theorem 2 we obtain our next result.

Theorem 3. Given a set of linear functions fj(i) = aj + bji, and binary

sequences U
(j)
k satisfying (1) with some initial conditions, we have

n∑
i=0

p∏
j=1

U
(j)
fj(i)

=
1

2

∑
M∈P(p)

qa
(M)

qb
(M)+b(M̄)(n+1)W

(M)

a(M)−a(M̄)+n(b(M)−b(M̄))

−qb(M̄)(n+1)W
(M)

a(M)−a(M̄)+(n+1)(b(M)−b(M̄))

−qb(M)
W

(M)

a(M)+a(M̄)−b(M)−b(M̄) +W
(M)

a(M)−a(M̄)

qb
(M) − qb(M̄)

Lb(M)−b(M̄) + 1
.

3 A Particular Case

To understand our general result better, we shall consider now a particular
case of two binary recurrences, which is the case most often encountered in
literature. Let Un, Vn be two binary recurrent sequences satisfying (1) with
some initial conditions. The Binet formula indicates that

Un = A1α
n +B1β

n,

Vn = A2α
n +B2β

n,

where A1 = U0β−U1

β−α , B1 = U1−U0α
β−α , A2 = V0β−V1

β−α , B2 = V1−V0α
β−α .

As before, we take the twisted products W
{1,2}
n ,W

{1}
n , satisfying (1),

with initial conditions W
{1,2}
0 = A1A2 + B1B2,W

{1,2}
1 = A1A2α + B1B2β,

W
{1}
0 = A1B2 +B1A2,W

{1}
1 = A1B2α+B1A2β, so that W

{1,2}
n = A1A2α

n+

B1B2β
n, and W

{1}
n = A1B2α

n + B1A2β
n. From Theorem 1 we know that

W
{1}
n ,W

{1,2}
n ∈ 1

δ2Z. We next consider the example f1(i) = r + ki, f2(i) =
s+ ki.

Theorem 4. Let k, r, s be fixed integers. We have

n∑
i=0

Ur+kiVs+ki = qsW
{1}
r−s

qk(n+1) − 1

qk − 1

+
q2kW

{1,2}
r+s+2kn −W

{1,2}
r+s+2k(n+1) − q

2kW
{1,2}
r+s−2k +W

{1,2}
r+s

q2k − L2k + 1
.
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Proof. First,

Ur+kiVs+ki = (A1α
r+ki +B1β

r+ki)(A2α
s+ki +B2β

s+ki)

= (A1A2α
r+s+2ki +B1B2β

r+s+2ki)

+(A1B2α
r+kiβs+ki +A2B1α

s+kiβr+ki)

= W
{1,2}
r+s+2ki + qs+ki(A1B2α

r−s +A2B1β
r−s)

= W
{1,2}
r+s+2ki + qs+kiW

{1}
r−s. (3)

In the notations of Theorem 3, the previous product will be

1

2

(
qf1(i)+f2(i)W ∅−F (i) + qf2(i)W

{1}
f1(i)−f2(i) + qf1(i)W

{2}
f2(i)−f1(i)

+W
{1,2}
f1(i)+f2(i)

)
= W

{1,2}
f1(i) + qf2(i)W

{1}
f1(i)−f2(i).

Using (3), we separate the sum
∑n

i=0 Ur+kiVs+ki into two sums. First,

n∑
i=0

qs+kiW
{1}
r−s = qsW

{1}
r−s

n∑
i=0

(qk)i = qsW
{1}
r−s

qk(n+1) − 1

qk − 1
, (4)

(we could have also used Lemma 2 with x := q, a = s, b = k and c = r−s, d =
0). Next, using Lemma 2 with x := q, a = b = 0 and c = r + s, d = 2k, we
get

n∑
i=0

Wt+`i =
q`Wt+`n −Wt+`(n+1) − q`Wt−` +Wt

q` − L` + 1
.

and the second sum becomes

n∑
i=0

W
{1,2}
r+s+2ki =

q2kW
{1,2}
r+s+2kn −W

{1,2}
r+s+2k(n+1) − q

2kW
{1,2}
r+s−2k +W

{1,2}
r+s

q2k − L2k + 1
,

which finishes the proof of our theorem.

If we take un = Xn (p, q, 0, 1) and vn = Xn (p, q, 2, p) (p 6= 0,
√
p2 − 4q 6=

0), then by required arrangements, we obtain for k = 2

n∑
i=0

ur+2ivs+2i =
v4n+r+s+2 − vr+s−2 − p (n+ 1) qrus−r

p (p2 − 4q)

which is the main result of [1, Theorem 1].
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4 Further Extension

Presumably, one can take the same approach as we have done it previously,
for sequences determined by different recurrence relations, but the compu-
tation becomes more difficult. However, there are instances when one can

get similar results. Let X
(j)
n (j = 1, 2, . . . , p) be arbitrary sequences satis-

fying some second-order recurrences (with integer coefficients) with Binet

formulas X
(j)
n = Ajα

n
j +Bjβ

n
j , where X

(j)
0 , X

(j)
1 ∈ Z and αj + βj , αjβj ∈ N.

As before, we define the p-twisted product sequences

W (M)
n1,n2,...,np =

∏
j∈M

Ajα
nj
j

∏
k 6∈M

Bkβ
nk
k

+

∏
j∈M

Bjα
nj

∏
k 6∈M

Akβ
nk

 .

Let the associated Lucas sequences be defined by Ln1,n2,...,np = αn1
1 αn2

2 · · ·α
np
p +

βn1
1 βn2

2 · · ·β
np
p .

Certainly, the next theorem can be extended to any sum of products of
p sequences, indexed by linear functions, using the above twisted products,
but it is obviously more difficult to formalize the result. We shall give an
instance of such a result, however we do not include the proof, since it goes
along the lines of the proof of Theorem 4. Let α1 + β1 = p, α1β1 = q, and
α2 + β2 = r, α2β2 = s, where p, q, r, s ∈ Z, and p2 − 4q 6= 0, r2 − 4s 6= 0.

Theorem 5. If f, g : N→ N, then

n∑
j=1

X
(1)
f(j)X

(2)
g(j) =

n∑
j=1

(
W
{1,2}
f(j),g(j) +W

{1}
f(j),g(j)

)
.

Further, if a, b, c, d ∈ N, then

n∑
j=1

X
(1)
aj+bX

(2)
cj+d =

qascW
{1,2}
an+b,cn+d − q

ascW
{1,2}
b−a,d−c −W

{1,2}
a(n+1)+b,c(n+1)+d +W

{1,2}
b,d

qasc − La,c + 1
.

Besides the usefulness of the defined twisted products (based on the
same recurrence) in the computation of sums of products, one could also ask,
independently, about the arithmetic, or primitive primes in the factorization
of these products (multiplied by an appropriate power of the discriminant
δ, cf. Theorem 1), but we shall investigate that elsewhere.
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