SOME DOUBLE BINOMIAL SUMS RELATED WITH THE
FIBONACCI, PELL AND GENERALIZED ORDER-t£ FIBONACCI
NUMBERS

EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. We consider some double binomial sums related with the Fibonacci,
Pell numbers and a multiple binomial sums related with the generalized order-k
Fibonacci numbers. The Lagrange-Biirmann formula and other known tech-
niques are used to prove them.

1. INTRODUCTION

The generating function of the Fibonacci numbers F), is

ZFx 1—:1:fx2

Similarly, the generating function of the Pell numbers P, is

pr 1—233—3:2

The generalized order-k Fibonacci numbers fn are defined by
k) = Z (k)l for n>k

with initial conditions f{*) = 271 for 1 < j < k.
For example, when k = 3, the generalized Fibonacci numbers fT(LS) are reduced
to the Tribonacci numbers 7;, defined by
T,=Ty 1+Th 2o+Th 3

Wltthzl, T2:2andT3=4, for n > 3.
For these number sequences, we recall the combinatorial representations due to
2, 3, 5]:

é <7Z__1Z> = F,, (1.1)

[(n—

DRl
2 =P 1.2
> (Ml) .. (1.2)
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znjz ( )( j) = Fonya (1.3)

1=0 j=0

Among the formulas (1.1-1.3), the last formula seems to be different from first two
identities just above since it includes double sums, see [2]. The authors of the above
cited papers use a combinatorial approach to prove these results. For many similar
identities, we refer to [6].

In this paper, we shall derive some new double binomial sums related with the Fi-
bonacci, Pell and generalized order-k Fibonacci numbers and then use the Lagrange-
Biirmann formula and well known other techniques to prove them.

The Lagrange-Biirmann formula is a very useful tool if one knows a series ex-
pansion for y(z) but would like to obtain the series for z in terms of y. We recall
the formula (for details see [1, 4]): Suppose a series for y in powers of x is required
when y = z®(y). Assume that ® is analytic in a neighborhood of y = 0 with
®(0) # 0. Then

x—y/@ Zanya a/l#o

n=1
Then the two (equivalent) versions of the Lagrange(-Biirmann) inversion formula
can be written as

Fly Z [dcgn 11 F'(y )@’l(y))]

z=0
or

F(y) e " |:dn :l
—_— = E — | —(F(y)®"(y .
1—29'(y) = n! dy"( ()" )) 20
We would like to rephrase this using the notation of the “coefficient—of” operator:

Fly) =i n . o
T ) Y W(E@)R" () 2"

n=0
we will use it in this form.

2. DOUBLE BINOMIAL SUMS
We start with a result related to Fibonacci numbers:

Theorem 1. Forn > 0,

reo 2 ()00)

0<i,j<n

= (")

) +z<”24;3>

n
> (1+y)"
=0
= S (1 4 )i (n +J’> L+ (1)
i>0

Proof. We start from

and compute
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= [ viE) e (1= i) T

2
here the desired sum takes the form:

Jjt+n

n

el [(1 + \/W)WL + (1 — m)”"} A+y)"

2
j=0
—Z 23 (1_’_\/?) gtn ( 1—|—y "‘Z 23 ( m)j+n(1-|-2y)n
§>0
= (1 Vi) 1+ +§: 9 (1- i)

Let us consider the first sum:
il 2+n
Sl (14 V1+y) )"
j=0
This is of the form

> W)y

j=>0
with

(1+\/1+) (1+y)" and ®(y) = /14110

The Lagrange-Biirmann formula can now be applied to this sum. The general
formula is given by

j i i Fu)
]Z:O[y |F(y)®(y) - = *m-

We need the instance = 1 here, and the variables = and y are linked via y = 2®(y).
Notice that ®(y) must be a power series in y with a constant term different from
zero. Therefore by the solution of y = ®(y), we find y = a = (1 + \/5) /2 and so

_ V5 F@@:(7+&@>i

2

@@=““?1-&@=%PJJ'

(-5 (522)

S (1+vTFe) T gy,

J=0

So our evaluation is

The second term is

This is the instance z = —1, which translates to y = —1 and so the second term is
F(=1)

—— =0.
1+ o(-1)
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The last sum is

el (1 - \/W)W (L+y)" =D ¥y (1 —Vity )M (141y)"

>0 >0 Y
o (1=V1+y jtn "
S (T e
>0 y

This is again of the form

>_WIF@)e(y)
with ”
Fy)=(1-vT+y) (1+y)" and ()= 1=vity VyHy

We need the instance x = 1 here, and the link is
1—/1
e < y - > '

By the solution of the last equation, we find y = 8 where = (1 — \/5) /2 and so
we write

1—-v5 7-3v5\" 1 1

So our evaluation is
(e 38) ()
5 2
Altogether
n N n 4n—1 _ pin-—1
VAN 5\ 2 2 5

as desired. O

Theorem 2. Forn >0,
n-+1 n+j
Fipi1 = .
<i,j<n+1

Proof. Since

[ (1 +y)" = (ZHJ

and
n+1 .
(n+yg
S — 1 n—+1
>+ (5:)

g () L C

) 2
i>0

[l vy - (- vy e
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ot

here the desired sum takes the form:

n+1/2

S (1) - (1= i) 42
fz 2j—1 (1+\/?)J+n%n+l/2

7j>1
i1 gtn (14 y)mtt/2
2 J(1-Vi+y) ;
) 3/24n+1/2] (1 4+ )7 T1/2 1 — (—1)7
N R e
-1 gt (14 y)m /2
Z[y 1(1-vI+y) e

Let us start with one term in the above sum:

% (1+ﬁ

Jj=0

n+1/2

j/2+n+1/2
) 1+y)

This is of the form

> WP (y)®(y)

Jj=0

with
n+1/2
)= (1+VI+y) Ay and e(y) =1+ /Ty
This is the instance x = 1, which, by o = (1 + \/5) /2, translates to

— 1 + \/5 F(Oz) — a4n+2

and

The second term is

J/2+n+1/2 .
Sy (1 +/1+ ) 1+ y)"H2(—1)7,
Jj=0
This is the instance x = —1, which translates to y = —1 and so the second term is

F(=1)

—— _—o.
1+ o(-1)
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Finally the last term is of the form:

Sl (1= Vi) gy

Jj=1

Jj+n
— Z[y%‘fl]yﬁn (1_ vty ) (1 4 y)n+1/2

i>1 y
i1, m 1- V 1+ Jn n
= [yt <y> (1+y) 2
i>0 y
This is of the form:
> WIF )y
>0
with
n a1 1—-1+
F(y) = (1 - \/1+y) (I+y)"" 2y and @(y) = %

S

This is the instance x = 1, which translates toy = 8 = 1*2 . Thus

1—\/5 F(ﬁ) 1 4n-+2
e ()

F(p)=—-p"*2, o'(8) =

So our evaluation is

(=)o o)

as claimed. O

Theorem 3. Forn >0,

Fe=2 3 (50 ('57)

i=0 j=0

nl n-+1 n+j
an = . . .
e M I [

Again by using the Lagrange-Biirmann formula, Theorem 3 can be similarly
proved.

Theorem 4. Forn > 0,
Fopypo+ Fryr Z n—1i\ [ n-—2j
2 L 2j i )
0<4,j<n

Proof. First, we replace ¢ by n — ¢ and get

> )05
0<2j<i<n 2j) \i—=2j
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Now we compute the generating function of it:

> 2 w)(08) - 2 ) o

n>0 0<2j<i<n 0<25<i

B (1—2)% 1-22
- Z (1—22)1421 (1 —2z—22)(1 — 32+ 22)

j=0
RS S S
21 —2z—22  21—3z—22
which is the generating function of the numbers (Fap 2 + Fri1)/2. O

The following results are similar:
Theorem 5. Forn > 0,

0 )

i=1j=1

n n—1
Fop_1 = Z (._ )( ) )
o<j<i<n N T I/N T

Theorem 6. Forn >0,
n—1i\(j
Fop,+1= Fy 1 = ) . 2.1
wri=yna- 3 (7)) &
=0 0<i<j<n
Proof. Multiplying the right hand side of (2.1) by 2™ and summing over n, we get

= 2 (00622 ()6)

n=20  0<i<j<n

_ J i+j n(h+J _ J i+j¥
- () () - 2 (3) e
0<i<j h>0 0<2i<j
31

_i>0 (1-22)2+F1  (1—-2)(1—-32+22) 1-32z+22 1-2

which is the generating function of the numbers Fy,, + 1. O

For the Pell numbers, we give the following result:

e 5 (590 o

Proof. Multiplying the right hand side of (2.2) by z™ and summing over n, we get

g2 2 (D)0 250

n>0  0<i<j<n J 0<i<j h>0

j i+j h thj _ ] i+j 1
> ()2 ()2 0
0<i<j h>0 0<i<j

Theorem 7. Forn >0,
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= 2 = (0) = St o

0<i<j i>0
1 1 B 1
N -z, 2(14+2)  1-2z—22
1—2z
This is the generating function of the numbers P, ;. O

Now we give a double sum for the Tribonacci numbers:

Theorem 8. Forn >0,

n- > (2O(5)
o<j<i<n N T I/AN T
Proof. Consider

. =i\ (i—j (- )
Sre= ¥ (00 ~>ZZ( J)zA()
n>0 0<j<i<n t=J J 0<j<i J />0 t=J

L h
_ ift—J h+ h z
o Z Z( j )(1 yi—itl ZZZ ]<]) Z)ht1’

0<;<i §>0h>0
22
Let t = - and we continue
1 < h
ZT"ZR1—ZZ,ZJZ(3'> l—tJ+1
n>0 0<j h>0 0<j
1 1 1 1 1
l—zl—t, 2t 1-zl-t—zt
1-¢
1 1 B 1
o 1l-z 22 22 1—z—22—23
11—z 1-z
which is the generating function of the Tribonacci numbers, as expected. So the
proof is complete. O

By using the same proof method as in Theorem 8, we get a more general result:

Theorem 9. Forn >0,

n - . . . . e .
1 — 1 9 — 1 7
0<ip<<ip<n N1 2/ N2 TS k

where fT(Lk) is the n-th generalized order-k Fibonacci number.
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