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Abstract. We consider some double binomial sums related with the Fibonacci,
Pell numbers and a multiple binomial sums related with the generalized order-k
Fibonacci numbers. The Lagrange-Bürmann formula and other known tech-
niques are used to prove them.

1. Introduction

The generating function of the Fibonacci numbers Fn is
1X
n=0

Fnx
n =

x

1� x� x2 :

Similarly, the generating function of the Pell numbers Pn is
1X
n=0

Pnx
n =

x

1� 2x� x2 :

The generalized order-k Fibonacci numbers f (k)n are de�ned by

f (k)n =
kX
i=1

f
(k)
n�i for n > k

with initial conditions f (k)j = 2j�1 for 1 � j � k.
For example, when k = 3, the generalized Fibonacci numbers f (3)n are reduced

to the Tribonacci numbers Tn de�ned by

Tn = Tn�1 + Tn�2 + Tn�3

with T1 = 1, T2 = 2 and T3 = 4, for n > 3.
For these number sequences, we recall the combinatorial representations due to

[2, 3, 5]:
nX
i=1

�
n� i
i� 1

�
= Fn; (1.1)

b(n�1)=2cX
i=0

�
n

2i+ 1

�
2i = Pn; (1.2)
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nX
i=0

nX
j=0

�
n� i
j

��
n� j
i

�
= F2n+3: (1.3)

Among the formulas (1.1�1.3), the last formula seems to be di¤erent from �rst two
identities just above since it includes double sums, see [2]. The authors of the above
cited papers use a combinatorial approach to prove these results. For many similar
identities, we refer to [6].
In this paper, we shall derive some new double binomial sums related with the Fi-

bonacci, Pell and generalized order-k Fibonacci numbers and then use the Lagrange-
Bürmann formula and well known other techniques to prove them.

The Lagrange-Bürmann formula is a very useful tool if one knows a series ex-
pansion for y(x) but would like to obtain the series for x in terms of y: We recall
the formula (for details see [1, 4]): Suppose a series for y in powers of x is required
when y = x�(y). Assume that � is analytic in a neighborhood of y = 0 with
�(0) 6= 0. Then

x = y=�(y) =

1X
n=1

any
n; a1 6= 0:

Then the two (equivalent) versions of the Lagrange(-Bürmann) inversion formula
can be written as

F (y) = F (0) +
1X
n=1

xn

n!

�
dn�1

dyn�1
�
F 0(y)�n(y)

��
x=0

or
F (y)

1� x�0(y) =
1X
n=0

xn

n!

�
dn

dyn
�
F (y)�n(y)

��
x=0

:

We would like to rephrase this using the notation of the �coe¢ cient�of�operator:

F (y)

1� x�0(y) =
1X
n=0

[yn]
�
F (y)�n(y)

�
� xn;

we will use it in this form.

2. Double Binomial Sums

We start with a result related to Fibonacci numbers:

Theorem 1. For n > 0,

F4n�1 =
X

0�i;j�n

�
n+ i

2j

��
n+ j

2i

�
:

Proof. We start from

[y2j ](1 + y)n+i =

�
n+ i

2j

�
and compute

S =
nX
i=0

(1 + y)n+i
�
n+ j

2i

�
=
X
i�0
(1 + y)n+i=2

�
n+ j

i

�
1 + (�1)i

2
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=

��
1 +

p
1 + y

�j+n
+
�
1�

p
1 + y

�j+n� (1 + y)n
2

;

here the desired sum takes the form:
nX
j=0

[y2j ]

��
1 +

p
1 + y

�j+n
+
�
1�

p
1 + y

�j+n� (1 + y)n
2

=
X
j�0
[y2j ]

�
1 +

p
1 + y

�j+n (1 + y)n
2

+
X
j�0
[y2j ]

�
1�

p
1 + y

�j+n (1 + y)n
2

=
X
j�0
[yj ]

�
1 +

p
1 + y

�j=2+n (1 + y)n
2

1 + (�1)j
2

+
X
j�0
[y2j ]

�
1�

p
1 + y

�j+n (1 + y)n
2

:

Let us consider the �rst sum:X
j�0
[yj ]

�
1 +

p
1 + y

�j=2+n
(1 + y)n:

This is of the form X
j�0
[yj ]F (y)�(y)j

with

F (y) =
�
1 +

p
1 + y

�n
(1 + y)n and �(y) =

q
1 +

p
1 + y:

The Lagrange-Bürmann formula can now be applied to this sum. The general
formula is given by X

j�0
[yj ]F (y)�(y)j � xj = F (y)

1� x�0(y) :

We need the instance x = 1 here, and the variables x and y are linked via y = x�(y).
Notice that �(y) must be a power series in y with a constant term di¤erent from
zero. Therefore by the solution of y = �(y), we �nd y = � =

�
1 +

p
5
�
=2 and so

y =
1 +

p
5

2
; F (�) =

�
7 + 3

p
5

2

�n
;

�0(�) =
3�

p
5

8
;

1

1� �0(�) = 2
�
1� 1p

5

�
:

So our evaluation is

2

�
1� 1p

5

��
7 + 3

p
5

2

�n
:

The second term is X
j�0
[yj ]

�
1 +

p
1 + y

�j=2+n
(1 + y)n(�1)j :

This is the instance x = �1, which translates to y = �1 and so the second term is

F (�1)
1 + �0(�1) = 0:



4 EMRAH KILIÇ AND HELMUT PRODINGER

The last sum isX
j�0
[y2j ]

�
1�

p
1 + y

�j+n
(1 + y)n =

X
j�0
[y2j ]yj+n

�
1�

p
1 + y

y

�j+n
(1 + y)n

=
X
j�0
[yj ]yn

�
1�

p
1 + y

y

�j+n
(1 + y)n:

This is again of the form X
j�0
[yj ]F (y)�(y)j

with

F (y) =
�
1�

p
1 + y

�n
(1 + y)n and �(y) =

1�
p
1 + y

y
:

We need the instance x = 1 here, and the link is

y = x

�
1�

p
1 + y

y

�
:

By the solution of the last equation, we �nd y = � where � =
�
1�

p
5
�
=2 and so

we write

y = � =
1�

p
5

2
; F (�) =

�
7� 3

p
5

2

�n
and

1

1� �0(�) = 1 +
1p
5
:

So our evaluation is �
1 +

1p
5

��
7� 3

p
5

2

�n
:

Altogether"�
1� 1p

5

��
7 + 3

p
5

2

�n
+

�
1 +

1p
5

��
7� 3

p
5

2

�n#
1

2
=
�4n�1 � �4n�1p

5
= F4n�1;

as desired. �

Theorem 2. For n > 0,

F4n+1 =
X

1�i;j�n+1

�
n+ i

2j � 1

��
n+ j

2i� 1

�
:

Proof. Since �
y2j�1

�
(1 + y)

n+i
=

�
n+ i

2j � 1

�
and

S =
n+1X
i=1

(1 + y)n+i
�
n+ j

2i� 1

�
=
X
i�0
(1 + y)n+(i+1)=2

�
n+ j

i

�
1� (�1)i

2

=

��
1 +

p
1 + y

�j+n
�
�
1�

p
1 + y

�j+n� (1 + y)n+1=2
2

;
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here the desired sum takes the form:

n+1X
j=1

[y2j�1]

��
1 +

p
1 + y

�j+n
�
�
1�

p
1 + y

�j+n� (1 + y)n+1=2
2

=
X
j�1
[y2j�1]

�
1 +

p
1 + y

�j+n (1 + y)n+1=2
2

�
X
j�1
[y2j�1]

�
1�

p
1 + y

�j+n (1 + y)n+1=2
2

=
X
j�0
[yj ]

��
1 +

p
1 + y

�j=2+n+1=2� (1 + y)n+1=2
2

1� (�1)j
2

�
X
j�1
[y2j�1]

�
1�

p
1 + y

�j+n (1 + y)n+1=2
2

:

Let us start with one term in the above sum:X
j�0
[yj ]

�
1 +

p
1 + y

�j=2+n+1=2
(1 + y)n+1=2:

This is of the form X
j�0
[yj ]F (y)�(y)j

with

F (y) =
�
1 +

p
1 + y

�n+1=2
(1 + y)n+1=2 and �(y) =

q
1 +

p
1 + y:

This is the instance x = 1, which, by � =
�
1 +

p
5
�
=2; translates to

y =
1 +

p
5

2
; F (�) = �4n+2

and

�0(�) =
3�

p
5

8
;

1

1� �0(�) = 2
�
1� 1p

5

�
:

So our evaluation is:

2

�
1� 1p

5

�
�4n+2:

The second term isX
j�0
[yj ]

�
1 +

p
1 + y

�j=2+n+1=2
(1 + y)n+1=2(�1)j :

This is the instance x = �1, which translates to y = �1 and so the second term is

F (�1)
1 + �0(�1) = 0:
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Finally the last term is of the form:X
j�1
[y2j�1]

�
1�

p
1 + y

�j+n
(1 + y)n+1=2

=
X
j�1
[y2j�1]yj+n

�
1�

p
1 + y

y

�j+n
(1 + y)n+1=2

=
X
j�0
[yj ]yn+1

�
1�

p
1 + y

y

�j+n
(1 + y)n+1=2:

This is of the form: X
j�0
[yj ]F (y)�(y)j

with

F (y) =
�
1�

p
1 + y

�n
(1 + y)n+

1
2 y and �(y) =

1�
p
1 + y

y
:

This is the instance x = 1, which translates to y = � = 1�
p
5

2 . Thus

F (�) = ��4n+2; �0(�) = �1�
p
5

4
;

F (�)

1� �0(�) = �
�
1 +

1p
5

�
�4n+2:

So our evaluation is��
1� 1p

5

�
�4n+2 +

�
1 +

1p
5

�
�4n+2

�
1

2
= F4n+1;

as claimed. �

Theorem 3. For n > 0,

F4n =

nX
i=0

nX
j=0

�
n+ i

2j � 1

��
n+ j

2i

�
;

F4n�3 =

nX
i=0

nX
j=0

�
n+ i

2j + 1

��
n+ j

2i+ 1

�
:

Again by using the Lagrange-Bürmann formula, Theorem 3 can be similarly
proved.

Theorem 4. For n > 0,

F2n+2 + Fn+1
2

=
X

0�i;j�n

�
n� i
2j

��
n� 2j
i

�
:

Proof. First, we replace i by n� i and getX
0�2j�i�n

�
i

2j

��
n� 2j
i� 2j

�
:
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Now we compute the generating function of it:X
n�0

zn
X

0�2j�i�n

�
i

2j

��
n� 2j
i� 2j

�
=

X
0�2j�i

�
i

2j

�
zi

(1� z)i+1�2j

=
X
j�0

z2j(1� z)2j
(1� 2z)1+2j =

1� 2z
(1� z � z2)(1� 3z + z2)

=
1

2

1

1� z � z2 +
1

2

1

1� 3z � z2 ;

which is the generating function of the numbers (F2n+2 + Fn+1)=2. �

The following results are similar:

Theorem 5. For n > 0,

F2n =
nX
i=1

nX
j=1

�
n� i
j � 1

��
n� j
i� 1

�
;

F2n�1 =
X

0�j�i�n

�
n

i� j

��
n� i
j

�
:

Theorem 6. For n > 0,

F2n + 1 =

nX
i=0

F2i�1 =
X

0�i�j�n

�
n� i
j

��
j

2i

�
: (2.1)

Proof. Multiplying the right hand side of (2.1) by zn and summing over n, we get

S =
X
n�0

zn
X

0�i�j�n

�
n� i
j

��
j

2i

�
=
X
0�i�j

X
h�0

zh+i+j
�
h+ j

j

��
j

2i

�

=
X
0�i�j

�
j

2i

�
zi+j

X
h�0

zh
�
h+ j

j

�
=

X
0�2i�j

�
j

2i

�
zi+j

1

(1� z)j+1

=
X
i�0

z3i

(1� 2z)2i+1 =
1� 2z

(1� z)(1� 3z + z2) =
z

1� 3z + z2 +
1

1� z ;

which is the generating function of the numbers F2n + 1. �

For the Pell numbers, we give the following result:

Theorem 7. For n � 0,

Pn+1 =
X

0�i�j�n

�
n� i
j

��
j

i

�
: (2.2)

Proof. Multiplying the right hand side of (2.2) by zn and summing over n, we get

S =
X
n�0

zn
X

0�i�j�n

�
n� i
j

��
j

i

�
=
X
0�i�j

X
h�0

zh+i+j
�
h+ j

j

��
j

i

�

=
X
0�i�j

�
j

i

�
zi+j

X
h�0

zh
�
h+ j

j

�
=
X
0�i�j

�
j

i

�
zi+j

1

(1� z)j+1
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=
X
0�i�j

zj

(1� z)j+1

�
j

i

�
zi =

X
j�0

zj

(1� z)j+1 (1 + z)
j

=
1

1� z
1

1� z(1 + z)
1� z

=
1

1� 2z � z2 :

This is the generating function of the numbers Pn+1. �
Now we give a double sum for the Tribonacci numbers:

Theorem 8. For n � 0,

Tn =
X

0�j�i�n

�
n� i
i� j

��
i� j
j

�
:

Proof. ConsiderX
n�0

Tnz
n =

X
0�j�i�n

zn
�
n� i
i� j

��
i� j
j

�
=
X
0�j�i

zi
�
i� j
j

�X
h�0

zh
�
h

i� j

�

=
X
0�j�i

zi
�
i� j
j

�
zi�j

(1� z)i�j+1 =
X
j�0

X
h�0

zh+j
�
h

j

�
zh

(1� z)h+1 :

Let t =
z2

1� z , and we continueX
n�0

Tnz
n =

1

1� z
X
0�j

zj
X
h�0

�
h

j

�
th =

1

1� z
X
0�j

zj
tj

(1� t)j+1

=
1

1� z
1

1� t
1

1� zt

1� t

=
1

1� z
1

1� t� zt

=
1

1� z
1

1� z2

1� z �
z3

1� z

=
1

1� z � z2 � z3 ;

which is the generating function of the Tribonacci numbers, as expected. So the
proof is complete. �
By using the same proof method as in Theorem 8, we get a more general result:

Theorem 9. For n > 0,

f (k)n =
X

0�ik�����i1�n

�
n� i1
i1 � i2

��
i1 � i2
i2 � i3

�
� � �
�
ik�1 � ik

ik

�
where f (k)n is the n-th generalized order-k Fibonacci number.
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