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ABSTRACT 
In this paper, we derive new double binomial sums families related with 
generalized second, third and certain higher order linear recurrences. We also 
present various parametric generalizations of some results of [1, 2]. Finally we 
present some interesting double sums including only one binomial coefficient 
related with certain number sequences of various order. We use generating 
function methods to prove claimed results. 
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1. INTRODUCTION 
 The second order linear recurrence , , briefly , is defined by for 1 
 , (1.1) 
with initials 0 and 1. 

The third order linear recurrence , , , briefly , is defined by for 1 
 , (1.2) 
with initials 0 and 1. 
 The fourth order linear recurrence , , , , briefly , is defined by for 
1 
 , (1.3) 
with initials  0 and 1. 
 The generating functions of the sequences ,  and  are 

1
1

,
1

1
, 

1
1

. 

 Kılıç and Prodinger [1] presented some double binomial sums related with the 
Fibonacci numbers, Pell numbers, Tribonacci numbers and generalized order-k Fibonacci 
numbers. Here we recall some of them from [1]: 
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where ,  and  stand for the nth Fibonacci, Pell and Tribonacci number, respectively. 
 Kılıç and Belbechir [2] gave some parametric generalizations of the results of [1] as 
well as they presented some new kinds of double binomial sums. For example, they 
computed the generating functions of the following double binomial sums families: 
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 In this paper, firstly we derive new double binomial sums families related with the 
sequences ,  and  as well as we will present generalizations of some results of 
the works [1, 2]. We also present some interesting double sums including only one binomial 
coefficient related with the certain number sequences of various order. Generally after each 
presented result, we will give some related corollaries without proof. We use generating 
function methods to prove claimed results. As double binomial sums examples, we will 
present the following new special results: 
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where ,  and  are the nth Fibonacci, Pell and Tribonacci number, respectively. 
 As double sums with one binomial coefficient, we will present following new special 
results: 
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2 1
		if	 	is	even,
		if	 	is	odd.  

 We could refer to [3] for using generating functions in deriving and proving certain 
combinatorial identities. 
 
2. DOUBLE BINOMIAL SUMS 
  
 In this section, we will present some new double binomial sums. Before them, we 
will need the following Lemma for further use. Note that we will frequently denote the 
generating function of a sequence  by , that is ∑ . Throughout this 
paper, we will assume that the parameters , ,  and  are positive integers, the 
parameters  and  are complex numbers and , ,  and  are nonnegative integers.  
 
Lemma 2.1 Let  and  be positive integers such that . Then the following identity 
holds 
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Theorem 2.1 The generating function of the sequence  defined by  

≔
0 ,

 

is 
1 1

1 1 1
. 

Proof. First, we replace  by  and get 

≔ .
0 ,

 

Now we compute its generating function. Consider 

  
,

 

  
, ,
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1 1
 

which, by Lemma 2.1, equals 

1 1
1

1 1
1 1

1 1 1
, 

as claimed. 
 Note that the case 1 and 0 could be found in [1]. 
 
Corollary 2.1  

2 1
,

2 2 , 1 , , 

where  is defined by the relation (1.2). 
 As a consequence of Corollary 2.1, we get  

2 1
1 0,1,1 ,

,

 

where the number 0,1,1  is the (n + 2)th term of the Padovan sequence which appears 
as A000931 in OEIS. 
 
Theorem 2.2 The generating function of the sequence  defined by  

≔
1 2

1

0 ,

 

is 
1 2

1 1 1 1 2 1 1
. 



 

Proof. Consider  
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as claimed. 
 The case 0 could be found in [1]. 
 
Corollary 2.2 

,

2 ,
⋯

, 

where  is defined as before. 
 For 1, we obtain the sums sequence of the sums of the Fibonacci numbers 
defined by  

1
, ⋯

. 

 
Corollary 2.3 

,

1 1 ⋯ ,
⋯

, 

where  is defined as before. 
 We have the following parametric results without proof. 
 
Theorem 2.3 Define the sequences  and  as shown 

≔
10 ,

 

and for any integer , 

≔ 2

0 ,

, 

respectively. The generating functions are 
1

1 1 1 1 1 1 1 1 1
 

and 
1 2

1 2 1 1
, 

respectively. 



 

 
Corollary 2.4 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 1 2 ,  which satisfies the relation (1.1) with 
initials 1 and 1 . 
 
Theorem 2.4 The generating function of  defined by  

≔
0 ,

 

is 
1

1 1
. 

 
Corollary 2.5 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 2, 1,  which satisfies the relation (1.2) with initials 
1 and 1 . 

  
Consequently, for 2	and 1, we have that 

2 1
,

′ 2,1,0  

which is the half of Pell-Lucas sequence (see the sequence A002203 in OEIS). 
 
Corollary 2.6 The sequence  defined by  

≔
2

0 ,

 

is equal to the sequence 3, 3,1 2 ,  which satisfies the relation (1.3) with 
initials 1, 1  and 1 2 . 
 
Theorem.6 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 2 1,  which satisfies the relation (1.1) with 
initials 1 and 1 . 
Proof. Consider 
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which is the generating function of the sequence  2 1, . 
 
 Also as consequences of the result, we have that 

1
,
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and for 1 

2
,

1 . 

The case 1 could be found in [2]. 
 
Theorem 2.6 The generating function of  defined by  

≔
1 20 ,

 

is 
1 1 1 1 1 2 1

1 1 2 2 1 1 2 1 1 1 1
. 

 
Corollary 2.7  

,

1, , 

where  is defined as before. 
 

Especially, we note the following special cases: 
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where  and  are the nth Fibonacci and Pell number, respectively. 
 Similar to the above results, we will present the following results without proof. 
Theorem 2.7 The generating function of  defined by  

≔
0 ,

 

is 
1

1 1
. 

 Note that when c = 1 in Theorem 7, we get the Corollary 2.7. 
 
Corollary 2.8 The sequence  defined by  



 

≔
2

0 ,

 

is equal to the sequence 2 2 , 1 2 ,  which satisfies the relation (1.2) 
with initials 1, 1  and 1 1 3 . 
 
 
Theorem 2.8 The generating functions of the sequences ,  and  as shown 

≔ 1

0 ,

, 	 ≔
2 10 ,

 

and 

≔
3 20 ,

 

are 
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1 1 3 2 1 2

1 1 3 3 3 1, 

respectively. 
 
Corollary 2.9  
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where  is defined as before. 
 Especially, we get 
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Theorem 2.9 The generating functions of the sequences  and  defined by 

≔ 1 1

0 ,

	and		 ≔
2 20 ,

 

are 
1 1 1 1 1 1 1

1 1 1 1 1
	and		

1 2 2 1 2

1 2 1 2 1, 

respectively. 
 
Corollary 2.10  
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where  is defined as before. 
 As consequences, note that 
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Corollary 2.11 The sequence  defined by  

≔
2

0 ,

 

is equal to the sequence 2 , 1 2 1 , 1  which satisfies the relation 
(1.2) with initials 1, 1  and 1 2 . 
 
Corollary 2.12  

2 1
,

2 , 2 1, , 

where  is defined as before. 
 As consequences, we get 

2 1
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,
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,

, 

where  and  are defined as before. 
 
Theorem 2.10 For positive integer  such that 2, the generating function of  defined 
by  

≔
0 ,

 

is 
1

1
. 

Proof.  By some rearrangements and Lemma 2.1, we write 
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1
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as claimed. 
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Corollary 2.13 The sequence  defined by  

≔
2

0 ,

 

is equal to the sequence 2 , 1  which satisfies the relation (1.1) with initials 
1 and 1 . 

 As a consequence, we get 

2
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,
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3. DOUBLE SUMS WITH ONE BINOMIAL COEFFICIENT 
 In this section, we will present new results on double sums with one binomial 
coefficient. 
 
Theorem 3.1 The generating function of the sequence  defined by  

≔
0 ,

 

is 
1 1

1 2 1 1 . 

Proof. Consider  
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which completes the proof. 
 
 
Corollary 3.1 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 1 3 , 2 3 ,  which satisfies the 
relation (1.2) with initials 1, 1  and 1 1 3 . 
 As consequences of the result, we have that 

,

2 	and	
,

1 1 .	 

 



 

Theorem 3.2 The generating function of  defined by  

≔
1 20 ,

 

is 
1 1 2 1

1 1 1 1 1 2 2
. 

 
Corollary 3.2 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 2 , 1,  which satisfies the relation (1.2) with 
initials 1, 1  and 1 . 
 Especially, we have the following results: 
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Theorem 3.3 The generating function of  defined by  

≔
0 ,

 

is 
1

1 1
. 

 
Corollary 3.3 The sequence  defined by  

≔
0 ,

 

is equal to the sequence 1 2 , 2 ,  which satisfies the relation 
(1.2) with initials 1, 1  and 1 1 3 . 
 
 
 
 
Corollary 3.4  

,

2 , 1 , 

where  is defined as before. 
 Especially, we have the result 
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Theorem 3.4 The generating functions of  and  defined by 

≔ 1

0 ,

	and		 ≔
20 ,

 

are 
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1 1 2 2 1 , 

respectively. 
Proof. Consider  
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as claimed. The second claim can be similarly proved. 
 
Corollary 3.5  

,

1 , ,  

and 
2

,

1 , 2 , 2 , , 

where  and 	are defined as before. 
 Especially, for 1, 

,

1. 

Corollary 3.6 The sequence  defined by  

≔
2

0 ,

 

is equal to the sequence 2 , 1 2 , ,  which satisfies the relation 
(1.3) with initials 1, 1 , 1  and 1

. 
 Now we will give an interesting result: 
  
Theorem 3.5 For 0, 

2 1
,

		if	 	is	even,
		if	 	is	odd,  

where 	and  are the nth Fibonacci and Lucas number, respectively. 
Proof.  Consider 
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as claimed. 
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