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ABSTRACT

In this paper, we derive new double binomial sums families related with
generalized second, third and certain higher order linear recurrences. We also
present various parametric generalizations of some results of [1, 2]. Finally we
present some interesting double sums including only one binomial coefficient
related with certain number sequences of various order. We use generating
function methods to prove claimed results.
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1. INTRODUCTION
The second order linear recurrence {U, (p, q)}, briefly {U,,}, is defined by forn > 1
Up =pUn-1 +qUp—2, (1.1)
with initials Uy, = 0 and U; = 1.
The third order linear recurrence {V,,(p, q,7)}, briefly {V;,}, is defined by forn > 1
Vo = PVno1 +qVyp +17V3, (1.2)
with initials V_; =V, =0and V; = 1.
The fourth order linear recurrence {W,,(p,q,r,s)}, briefly {W,}, is defined by for n >
1
Wn = an—l + an—Z + rWn—3 + 5Wn—41 (1-3)
with initials W_, =W_; =W, =0and W, = 1.
The generating functions of the sequences {U,, 1}, {V,,+1} and {W,,,,} are

1 1
U n _— — ZV n — A
Z n+1Z 1—pz — qz? n+1Z 1—pz—qz?—rz3
n

nz0 >0

1
W, n= .
ZO n+1% 1—pz—qz%—rz3—sz*
n=
Kilig and Prodinger [1] presented some double binomial sums related with the
Fibonacci numbers, Pell numbers, Tribonacci numbers and generalized order-k Fibonacci

numbers. Here we recall some of them from [1]:
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where F,, B, and T,, stand for the nth Fibonacci, Pell and Tribonacci number, respectively.
Kilig and Belbechir [2] gave some parametric generalizations of the results of [1] as

well as they presented some new kinds of double binomial sums. For example, they

computed the generating functions of the following double binomial sums families:
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In this paper, firstly we derive new double binomial sums families related with the
sequences {U,},{V},} and {W,} as well as we will present generalizations of some results of
the works [1, 2]. We also present some interesting double sums including only one binomial
coefficient related with the certain number sequences of various order. Generally after each
presented result, we will give some related corollaries without proof. We use generating
function methods to prove claimed results. As double binomial sums examples, we will
present the following new special results:
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where F,, B, and T,, are the nth Fibonacci, Pell and Tribonacci number, respectively.
As double sums with one binomial coefficient, we will present following new special

results:
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We could refer to [3] for using generating functions in deriving and proving certain
combinatorial identities.
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2. DOUBLE BINOMIAL SUMS

In this section, we will present some new double binomial sums. Before them, we
will need the following Lemma for further use. Note that we will frequently denote the
generating function of a sequence {a,} by A(2), that is A(z) = Y50 a,2". Throughout this
paper, we will assume that the parameters c,cq,c, and c; are positive integers, the
parameters t and k are complex numbers and n,r, r; and r, are nonnegative integers.

Lemma 2.1 Let a and B be positive integers such that g = a. Then the following identity
holds
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Theorem 2.1 The generating function of the sequence {s,,} defined by
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Proof. First, we replace i by n — i and get
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Now we compute its generating function. Consider
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which, by Lemma 2.1, equals
z" (z°t(1 - Zk))n 3 zZ7(1—(k+ 1Dz)c "t
(11— (k+1)z)r+t L 1-(+1Dz)n (1-(k+1)z)°—tzc(1 - zk)
as claimed.
Note that the case ¢ = 1 and r = 0 could be found in [1].
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where {V,,} is defined by the relation (1.2).
As a consequence of Corollary 2.1, we get
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where the number V,,(0,1,1) is the (n + 2)th term of the Padovan sequence which appears
as A000931 in OEIS.

Theorem 2.2 The generating function of the sequence {s,,} defined by
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Proof. Consider
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as claimed.
The case ry = r, = 0 could be found in [1].
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where {U,,} is defined as before.
For t = —1, we obtain the sums sequence of the sums of the Fibonacci numbers

defined by
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where {U,,} is defined as before.
We have the following parametric results without proof.

Theorem 2.3 Define the sequences {s,} and {y,} as shown
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and for any integer c,,
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Corollary 2.4 The sequence {s,} defined by
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is equal to the sequence {U;,(1 + 2k + t, —k — k?)} which satisfies the relation (1.1) with
initials Uy =1and U; =1+t + k.

Theorem 2.4 The generating function of {s,,} defined by
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Corollary 2.5 The sequence {s,} defined by
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is equal to the sequence {V},(2,t — 1, kt — t)} which satisfies the relation (1.2) with initials
Vo=V{=1andV, =1+t.

Consequently, for t = 2 and k = —1, we have that
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which is the half of Pell-Lucas sequence (see the sequence A002203 in OEIS).

Corollary 2.6 The sequence {s,} defined by

e 3 (0
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is equal to the sequence {W, (3,t — 3,1 — 2t, kt + t)} which satisfies the relation (1.3) with
initials Wy =W/ =1, W, =1+ tand W =1+ 2t.

Theorem.6 The sequence {s,} defined by
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is equal to the sequence {U;,(2t + 1,tk — t — t?)} which satisfies the relation (1.1) with
initials Uy =1and U; =1+ t.
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which is the generating function of the sequence {U;,(2t + 1,tk —t — t2)}.

Also as consequences of the result, we have that
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The case t = k = 1 could be found in [2].

Theorem 2.6 The generating function of {s,} defined by
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where {U, } is defined as before.

Especially, we note the following special cases:
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where F, and P, are the nth Fibonacci and Pell number, respectively.
Similar to the above results, we will present the following results without proof.
Theorem 2.7 The generating function of {s,} defined by
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Note that when ¢ = 1 in Theorem 7, we get the Corollary 2.7.
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Corollary 2.8 The sequence {s,} defined by
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is equal to the sequence {V;/ (2 + 2k + t,—(k — 1)? — 2t, t)} which satisfies the relation (1.2)
with initials Vy = 1,V =1+ t+kand V, = (1 + k)* + t(1 + 3k + ¢t).

Theorem 2.8 The generating functions of the sequences {s,}, {y,} and {w,,} as shown
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where {V,,} is defined as before.
Especially, we get
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Theorem 2.9 The generating functions of the sequences {s,} and {y,,} defined by
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Corollary 2.10
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where {U,,} is defined as before.
As consequences, note that
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Corollary 2.11 The sequence {s,,} defined by
ZRN 20N
Sp = Z (n . l)( .l> t'k’
0<ij<n J J

is equal to the sequence {V};(2 +t,—1 — 2t(1 — k), t(k — 1)?)} which satisfies the relation
(1.2) with initials Vg = 1,V =1+ tand V, = 1+ t + 2kt + t2.
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where {V},} is defined as before.
As consequences, we get
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where T,, and F, are defined as before.
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Corollary 2.13 The sequence {s,} defined by
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3. DOUBLE SUMS WITH ONE BINOMIAL COEFFICIENT

In this section, we will present new results on double sums with one binomial
coefficient.

Theorem 3.1 The generating function of the sequence {s,,} defined by
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relation (1.2) with initials Vg = 1,V{ = 1+t + kt and V, = (k + 1)? + kt(1 + 3k + kt).
As consequences of the result, we have that
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Theorem 3.2 The generating function of {s,,} defined by
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Especially, we have the following results:
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as claimed. The second claim can be similarly proved.
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Now we will give an interesting result:
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as claimed.
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