
VARIANTS OF THE FILBERT MATRIX

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract. A variation of the Filbert matrix from [1] is introduced, which has one additional
Fibonacci factor in the numerator. We also introduce its Lucas counterpart by taking Lucas
numbers instead of Fibonacci numbers in a similar manner. Explicit formulæ are derived for
the LU-decompositions, their inverses, the inverse matrix, as well as the Cholesky decompo-
sitions. The approach is to use q-analysis and to guess the relevant quantities, and proving
them later by induction.

1. Introduction

The Filbert matrix Hn =
(
ȟij
)n
i,j=1

is defined by ȟij = 1
Fi+j−1

as an analogue of the Hilbert

matrix where Fn is the nth Fibonacci number. It has been defined and studied by Richard-
son [4].

After the Filbert matrix, several generalizations and analogues of it have been investigated
and studied by several authors. For the readers convenience, we briefly summarize these:

• In [1], Kılıç and Prodinger studied the generalized Filbert Matrix F with entries 1
Fi+j+r

,

where r ≥ −1 is an integer parameter.
• After this generalization, Prodinger [3] defined a new generalization of the generalized

Filbert matrix by introducing 3 additional parameters by taking its entries as xiyj

Fλ(i+j)+r
.

• Recently, in [2], Kılıç and Prodinger gave a further generalization of the generalized
Filbert Matrix F by defining the matrix Q with entries hij as follows

hij =
1

Fi+j+rFi+j+r+1 . . . Fi+j+r+k−1
,

where r ≥ −1 and k ≥ 1 are integer parameters.

In the works summarized above, the authors derived explicit formulæ for the LU-decompos-
ition, their inverses, and the Cholesky factorization.

In this paper, we introduce two new variations of the Filbert matrix Hn, and define the
matrices G and L with entries gij and tij by

gij =
Fλ(i+j)+r

Fλ(i+j)+s
and tij =

Lλ(i+j)+r

Lλ(i+j)+s

where s, r and λ are integer parameters such that s 6= r, and s ≥ −1 and λ ≥ 1. This is the
first nontrivial instance where the numerator of the entries is not equal to zero.
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Our approach will be as follows. We will use the Binet forms

Fn =
αn − βn

α− β
= αn−1

1− qn

1− q
and Ln = αn + βn = αn (1 + qn)

with q = β/α = −α−2, so that α = i/
√
q.

Throughout this paper we will use the notation of the q-Pochhammer symbol (x; q)n =
(1− x)(1− xq) · · · (1− xqn−1).

We rewrite the entries of the matrices G and L in terms of the q-Pochhammer symbol:

gij = ir−sq−
1
2
(r−s) 1− qλ(i+j)+r

1− qλ(i+j)+s
and tij = ir−sq−

1
2
(r−s) 1 + qλ(i+j)+r

1 + qλ(i+j)+s
.

We will derive explicit formulæ for the LU-decompositions of matrices GN and LN , and
their inverses. Similarly to the results of [1, 2], the size of the matrices does not really
matter, and they can be thought as infinite matrices G, L and we may restrict it whenever
necessary to the first N rows resp. columns and write GN and LN . We also provide the
Cholesky decompositions. All the identities we will obtain hold for general q, and results
about Fibonacci and Lucas numbers come out as corollaries for the special choice of q.

Firstly, we will present all the results related to the matrix G. Second, we will give all the
results related to the matrix L. Finally we will indicate some proofs related to the matrix G.

As an illustration, we always write out the Fibonacci/Lucas case explicitly for λ = 2.

2. Results for G

We obtain the LU-decomposition G = L · U :

Theorem 2.1. For 1 ≤ d ≤ n we have

Ln,d =
(qλ; qλ)n−1(q

λ(d+1)+s; qλ)d
(qλ; qλ)n−d(qλ; qλ)d−1(qλ(n+1)+s; qλ)d

1− qλ(d2+n)+sd−s+r

1− qλ(d2+d)+sd−s+r
.

Its Fibonacci Corollary for λ = 2:

Corollary 2.1. For 1 ≤ d ≤ n,

Ln,d =

(n−1∏
t=d

F2t

)( d∏
t=1

F2(t+d)+s

)(n−d∏
t=1

F2t

)−1( d∏
t=1

F2(t+n)+s

)−1F2(d2+n)+sd−s+r

F2(d2+d)+sd−s+r
.

Theorem 2.2. For 1 ≤ d ≤ n we have

Ud,n =
ir−s+2q−

3s
2
+ r

2
+sd+λ(d2−d)(qλ; qλ)n−1(q

λ; qλ)d−1
(qλ; qλ)n−d(qλ(n+1)+s; qλ)d(qλ(d+1)+s; qλ)d−1

1− qλ(d2+n)+sd−s+r

1− qλ(d2−d)+sd−2s+r
(1− qs−r).

Its Fibonacci Corollary for λ = 2:

Corollary 2.2. For 1 ≤ d ≤ n

Ud,n =

(−1)r+ds+1
(n−1∏
t=1

F2t

)(d−1∏
t=1

F2t

)
F2(d2+n)+sd−s+rFs−r(n−d∏

t=1
F2t

)( d∏
t=1

F2(n+t)+s

)(d−1∏
t=1

F2(d+t)+s

)
F2(d2−d)+sd−2s+r

.

We could also determine the inverses of the matrices L and U :
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Theorem 2.3. For 1 ≤ d ≤ n we have

L−1n,d =
qλ

n(n−1)
2
−λdn+λ d(d+1)

2 (qλ; qλ)n−1(q
λ(d+1)+s; qλ)n−1(−1)n−d

(qλ; qλ)d−1(qλ(n+1)+s; qλ)n−1(qλ; qλ)n−d

1− qλ(n2−d)+sn−2s+r

1− qλ(n2−n)+sn−2s+r .

Its Fibonacci Corollary for λ = 2:

Corollary 2.3. For 1 ≤ d ≤ n

L−1n,d =

(−1)n−d
(n−1∏
t=1

F2t

)(n−1∏
t=1

F2(d+t)+s

)
F2(n2−d)+sn−2s+r(d−1∏

t=1
F2t

)(n−1∏
t=1

F2(n+t)+s

)(n−d∏
t=1

F2t

)
F2(n2−n)+sn−2s+r

.

Theorem 2.4. For 1 ≤ d ≤ n we have

U−1d,n =
q−λ

n(n−1)
2
−λdn+λ d(d+1)

2
+ 3s−r

2
−sn(qλ(n+1)+s; qλ)d−1(q

λ(d+1)+s; qλ)2n−d
(qλ; qλ)n−1(qλ; qλ)n−d(qλ; qλ)d−1

× 1− qλ(n2−d)+sn−2s+r

1− qλ(n2+n)+sn−s+r
1

1− qs−r
is−r(−1)n−d−1.

And its Fibonacci Corollary for λ = 2:

Corollary 2.4. For 1 ≤ d ≤ n

U−1d,n =

(−1)n−d−r−ns+1
(d−1∏
t=1

F2(n+t)+s

)(2n−d∏
t=1

F2(d+t)+s

)
F2(n2−d)+sn−2s+r(n−1∏

t=1
F2t

)(n−d∏
t=1

F2t

)(d−1∏
t=1

F2t

)
F2(n2+n)+sn−s+rFs−r

.

As a consequence, we can compute the determinant of Gn, since it is simply evaluated as
U1,1 · · ·Un,n:

Theorem 2.5.

detGn = (−1)nin(r−s)q
1
6
n(n+1)(3s+2λ(n−1))+−3sn+rn

2 (1− qs−r)n

×
n∏
d=1

(qλ; qλ)2d−1
(qλ(d+1)+s; qλ)d(qλ(d+1)+s; qλ)d−1

1− qλ(d2+d)+sd−s+r

1− qλ(d2−d)+sd−2s+r
.

Its Fibonacci Corollary for λ = 2:

Corollary 2.5.

detGn = (−1)n(r+1)+(n+1
2 )sFns−r

n∏
d=1

F2(d2+d)+sd−s+r

F4d+sF2(d2−d)+sd−2s+r

d−1∏
t=1

F 2
2t

F 2
2(d+t)+s

.

Now we compute the inverse of the matrix G. This time it depends on the dimension, so we
compute (GN )−1.

Theorem 2.6. For 1 ≤ n, d ≤ N :

(GN )−1n,d =
(qλ(d+1)+s; qλ)N (qλ(n+1)+s; qλ)N

(qλ; qλ)d−1(qλ; qλ)n−1(qλ; qλ)N−n(qλ; qλ)N−d
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× is−r(−1)n−d−1qλ
d(d+1)

2
+λ

n(n+1)
2
−λNd−λNn+ 3s−r

2
−sN

(1− qλ(n+d)+s)(1− qs−r)
1− qλ(N2+N−n−d)+sN−2s+r

1− qλ(N2+N)+sN−s+r .

Remark. The inverse matrix was not computed using the inverses of L and U , but rather
obtained directly by our usual guessing strategy. While the first alternative would mean that
we would have to simplify a sum, the second approach stays within our chosen method. This
remark applies as well to the Lucas case that is discussed in the next section.

Its Fibonacci Corollary for λ = 2:

Corollary 2.6. For 1 ≤ n, d ≤ N :

(GN )−1n,d =

( N∏
t=1

F2(d+t)+s

)( N∏
t=1

F2(n+t)+s

)
(d−1∏
t=1

F2t

)(n−1∏
t=1

F2t

)(N−n∏
t=1

F2t

)(N−d∏
t=1

F2t

) (−1)n−d−r+1F2(N2+N−n−d)+sN−2s+r

F2(n+d)+sFs−rF2(N2+N)+sN−s+r
.

Finally, we provide the Cholesky decomposition.

Theorem 2.7. For i, j ≥ 1:

Cn,d =
i
r−s
2

+1qλ
d(d−1)

2
+−3s+r

4
+ sd

2 (qλ; qλ)n−1

(qλ(n+1)+s; qλ)d(qλ; qλ)n−d
(1− qλ(d2+n)+sd−s+r)

×

√
(1− q2λd+s)(1− qs−r)

(1− qλ(d2+d)+sd−s+r)(1− qλ(d2−d)+sd−2s+r)
.

Its Fibonacci Corollary for λ = 2:

Corollary 2.7. For i, j ≥ 1:

Cn,d = ir+s(d−2)+1

( n−1∏
t=n−d+1

F2t

)( d∏
t=1

F2(n+t)+s

)−1

× F2(d2+n)+sd−s+r

√
F4d+sFs−r

F2(d2+d)+sd−s+rF2(d2−d)+sd−2s+r
.

3. Results for L

Now we collect our results related to the matrix L.
For convenience, we use the same letters L, U , C, but with the different meaning.
We obtain the LU-decomposition L = L · U :

Theorem 3.1. For 1 ≤ d ≤ n we have

Ln,d =
(qλ; qλ)n−1(−qλ(d+1)+s; qλ)d

(qλ; qλ)n−d(qλ; qλ)d−1(−qλ(n+1)+s; qλ)d

1− (−1)dqλ(d
2+n)+sd−s+r

1− (−1)dqλ(d2+d)+sd−s+r
.

Its Fibonacci Corollary for λ = 2:
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Corollary 3.1. For 1 ≤ d ≤ n,

Ln,d =

(n−1∏
t=d

F2t

)( d∏
t=1

L2(t+d)+s

)
(n−d∏
t=1

F2t

)( d∏
t=1

L2(t+n)+s

) ×

F2(d2+n)+sd−s+r
F2(d2+d)+sd−s+r

if d is even,

L2(d2+n)+sd−s+r
L2(d2+d)+sd−s+r

if d is odd.

Theorem 3.2. For 1 ≤ d ≤ n we have

Ud,n =
q
r−3s

2
+λd(d−1)+dsir−s(−1)d(qλ; qλ)n−1(q

λ; qλ)d−1
(qλ; qλ)n−d(−qλ(d+1)+s; qλ)d−1(−qλ(n+1)+s; qλ)d

× 1− (−1)dqλ(d
2+n)+sd−s+r

1 + (−1)dqλ(d2−d)+sd−2s+r
(1− qs−r).

Its Fibonacci Corollary for λ = 2:

Corollary 3.2. For 1 ≤ d ≤ n

Ud,n =

(−1)r+d(s+1)
(n−1∏
t=1

F2t

)(d−1∏
t=1

F2t

)
Fs−r(n−d∏

t=1
F2t

)( d∏
t=1

L2(n+t)+s

)(d−1∏
t=1

L2(d+t)+s

) ×


5dF2(d2+n)+sd−s+r
L2(d2−d)+sd−2s+r

if d is even,

5d−1L2(d2+n)+sd−s+r
F2(d2−d)+sd−2s+r

if d is odd.

We could also determine the inverses of the matrices L and U :

Theorem 3.3. For 1 ≤ d ≤ n we have

L−1n,d =
qλ

n(n−1)
2
−λdn+λ d(d+1)

2 (qλ; qλ)n−1(−qλ(d+1)+s; qλ)n−1(−1)n−d

(qλ; qλ)d−1(qλ; qλ)n−d(−qλ(n+1)+s; qλ)n−1

× 1 + (−1)nqλ(n
2−d)+sn−2s+r

1 + (−1)n qλ(n2−n)+sn−2s+r .

Its Fibonacci Corollary for λ = 2:

Corollary 3.3. For 1 ≤ d ≤ n

L−1n,d =

(−1)d+n
(n−1∏
t=1

F2t

)(n−1∏
t=1

L2(d+t)+s

)
(d−1∏
t=1

F2t

)(n−d∏
t=1

F2t

)(n−1∏
t=1

L2(n+t)+s

) ×

F2(n2−d)+sn−2s+r

F2(n2−n)+sn−2s+r
if n is odd,

L2(n2−d)+sn−2s+r

L2(n2−n)+sn−2s+r
if n is even.

Theorem 3.4. For 1 ≤ d ≤ n we have

U−1d,n =
is−r(−1)d(−qλ(d+1)+s; qλ)n−1(−qλ(n+1)+s; qλ)n

(1− qs−r)(qλ; qλ)d−1(qλ; qλ)n−d(qλ; qλ)n−1

× 1 + (−1)nqλ(n
2−d)+sn−2s+r

1− (−1)nqλn(n+1)+sn−s+r q
3s−r

2
−λn(n−1)

2
+λ

d(d+1)
2
−ns−λdn.

And its Fibonacci Corollary for λ = 2:

MONTH YEAR 5



Corollary 3.4. For 1 ≤ d ≤ n

U−1d,n =

(−1)r+d−ns
(n−1∏
t=1

L2(t+d)+s

)( n∏
t=1

L2(t+n)+s

)
(n−1∏
t=1

F2t

)(n−d∏
t=1

F2t

)(d−1∏
t=1

F2t

)
Fs−r

×


F2(n2−d)+sn−2s+r

5n−1L2(n2+n)+sn−s+r
if n is odd,

L2(n2−d)+sn−2s+r

5nF2(n2+n)+sn−s+r
if n is even.

As a consequence, we can compute the determinant of Ln, since it is simply evaluated as
U1,1 · · ·Un,n (we only state the Fibonacci version for λ = 2):

Theorem 3.5.

detLn = 5
1
2
n(n+(−1)d)(−1)nrin(s+1)(n+1)Fns−r

n∏
d=1

1

L4d+s

d−1∏
t=1

F 2
2t

L2
2(d+t)+s

×


F2(d2+d)+sd−s+r

L2(d2−d)+sd−2s+r
if d is even,

L2(d2+d)+sd−s+r

F2(d2−d)+sd−2s+r
if d is odd.

Now we compute the inverse of the matrix L. This time it depends on the dimension, so
we compute (LN )−1.

Theorem 3.6. For 1 ≤ d ≤ n ≤ N :

(LN )−1n,d =
(−qλ(n+1)+s; qλ)N (−qλ(d+1)+s; qλ)N

(qλ; qλ)n−1(qλ; qλ)d−1(qλ; qλ)N−n(qλ; qλ)N−d

× is−r(−1)n−d+Nqλ
d(d+1)

2
+λ

n(n+1)
2
−λNd−λNn+ 3s−r

2
−sN

(1− qs−r)(1 + qλ(n+d)+s)

1 + (−1)Nqλ(N
2+N−n−d)+sN−2s+r

1− (−1)Nqλ(N2+N)+sN−s+r .

Its Fibonacci Corollary for λ = 2:

Corollary 3.5. For 1 ≤ d ≤ n ≤ N :

(LN )−1n,d =

( N∏
t=1

L2(d+t)+s

)( N∏
t=1

L2(n+t)+s)(d−1∏
t=1

F2t

)(n−1∏
t=1

F2t

)(N−n∏
t=1

F2t

)(N−d∏
t=1

F2t

) 1

Fs−rL2(n+d)+s

×


L2(n2−d)+sn−2s+r

5NF2(n2+n)+sn−s+r
if N is even,

F2(N2+N−n−d)+sN−2s+r

5N−1L2(N2+N)+sN−s+r
if N is odd.

Finally, we provide the Cholesky decomposition.

Theorem 3.7. For n, d ≥ 1:

Cn,d =
(1− (−1)dqλ(d

2+n)+sd−s+r)
(
qλ; qλ

)
n−1

(qλ; qλ)n−d
(
−qλ(n+1)+s; qλ

)
d

× i−λd(d−1)+2+ r−s
2
−dqλ

d(d−1)
2

+−3s+r
4

+ sd
2
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×

√
(1 + q2λd+s)(1− qs−r)

(1− (−1)dqλ(d2+d)+sd−s+r)(1 + (−1)dqλ(d2−d)+sd−2s+r)
.

Its Fibonacci Corollary for λ = 2:

Corollary 3.6. For n, d ≥ 1:

Cn,d = ir+ds(−1)s+15d/2
( n−1∏
t=n−d+1

F2t

)( d∏
t=1

L2(n+t)+s

)−1√
L4d+sFs−r

×


F2(d2+n)+sd−s+r

1√
F2(d2+d)+sd−s+rL2(d2−d)+sd−2s+r

if d is even,

L2(d2+n)+sd−s+r
1√

L2(d2+d)+sd−s+rF2(d2−d)+sd−2s+r
if d is odd.

4. Proofs

We start with an introductory remark. For all the identities that we need to prove, exper-
iments indicate that they are Gosper-summable. However, the entries that we encounter in
our instances, do not qualify for the q-Zeilberger algorithm that we used in our earlier papers.
Therefore, it was necessary to guess the relevant quantities; the justification is then complete
routine. However, this guessing procedure is (with all the parameters involved) extremely time
consuming, and so we confined ourselves to the demonstration of two such proofs. We hope
that extensions of the q-Zeilberger algorithm will be developed that fit our needs.

First, we show that
∑

j Lm,jUj,n is indeed the matrix G, that is,∑
1≤d≤min{m,n}

Lm,dUd,n = ir−sq−
1
2
(r−s) 1− qλ(m+n)+r

1− qλ(m+n)+s
.

Since the formula is symmetric in m and n, we can assume without loss of generality that
m ≥ n.

However we have in fact a more general formula:∑
K≤d≤n

Lm,dUd,n = ir−sq−
1
2
(r−s)

× qλK2−λK+sK−s 1− qλK2−λK+λm+λn+r+sK−s

1− qλK2−λK+r+sK−2s
1− qr−s

1− qλm+λn+s

× (qλ; qλ)m−1(q
λ; qλ)n−1(q

s; qλ)m+1(q
s; qλ)n+1

(qλ; qλ)m−K(qλ; qλ)n−K(qs; qλ)m+K(qs; qλ)n+K
.

The formula we need follows from setting K := 1.
We use (backward) induction to prove the more general formula. Clearly it is true for

K = n, and the induction step amounts to show that

Lm,KUK,n + ir−sq−
1
2
(r−s)qλ(K+1)2−λ(K+1)+s(K+1)−s

× 1− qλ(K+1)2−λ(K+1)+λm+λn+r+s(K+1)−s

1− qλ(K+1)2−λ(K+1)+r+s(K+1)−2s
1− qr−s

1− qλm+λn+s
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× (qλ; qλ)m−1(q
λ; qλ)n−1(q

s; qλ)m+1(q
s; qλ)n+1

(qλ; qλ)m−K−1(qλ; qλ)n−K−1(qs; qλ)m+(K+1)(qs; qλ)n+(K+1)

= ir−sq−
1
2
(r−s)qλK

2−λK+sK−s

× 1− qλK2−λK+λm+λn+r+sK−s

1− qλK2−λK+r+sK−2s
1− qr−s

1− qλm+λn+s

× (qλ; qλ)m−1(q
λ; qλ)n−1(q

s; qλ)m+1(q
s; qλ)n+1

(qλ; qλ)m−K(qλ; qλ)n−K(qs; qλ)m+K(qs; qλ)n+K
.

By the definition of the matrices Lm,n and Um,n, the above equation takes the following form:

(qλ; qλ)m−1(q
λ(K+1)+s; qλ)K

(qλ; qλ)m−K(qλ; qλ)K−1(qλ(m+1)+s; qλ)K

1− qλ(K2+m)+sK−s+r

1− qλ(K2+K)+sK−s+r

× q−
3s
2
+ r

2
+sK+λ(K2−K)(qλ; qλ)n−1(q

λ; qλ)K−1(1− qs−r)
is−r−2(qλ; qλ)n−K(qλ(n+1)+s; qλ)K(qλ(K+1)+s; qλ)K−1

× 1− qλ(K2+n)+sK−s+r

1− qλ(K2−K)+sK−2s+r

+ ir−sq−
1
2
(r−s)qλ(K+1)2−λ(K+1)+s(K+1)−s

× 1− qλ(K+1)2−λ(K+1)+λm+λn+r+s(K+1)−s

1− qλ(K+1)2−λ(K+1)+r+s(K+1)−2s
(1− qr−s)

1− qλm+λn+s

× (qλ; qλ)m−1(q
λ; qλ)n−1(q

s; qλ)m+1(q
s; qλ)n+1

(qλ; qλ)m−K−1(qλ; qλ)n−K−1(qs; qλ)m+(K+1)(qs; qλ)n+(K+1)

= ir−sq−
1
2
(r−s)qλK

2−λK+sK−s

× 1− qλK2−λK+λm+λn+r+sK−s

1− qλK2−λK+r+sK−2s
1− qr−s

1− qλm+λn+s

× (qλ; qλ)m−1(q
λ; qλ)n−1(q

s; qλ)m+1(q
s; qλ)n+1

(qλ; qλ)m−K(qλ; qλ)n−K(qs; qλ)m+K(qs; qλ)n+K
,

which, after some simplifications using the definition of the q-Pochhammer symbol, is equiva-
lent to

(1− qs+2Kλ)(1− qλ(K2+m)+sK−s+r)(1− qλm+λn+s)(1− qλ(K2+n)+sK−s+r)

+ qs+2Kλ(1− qr+Kλ+mλ+nλ+K2λ+Ks)(1− qλ(m−K))

× (1− qλ(n−K))(1− qλK2−λK+r+sK−2s)

= (1− qλK2−λK+λm+λn+r+sK−s)(1− qλ(m+K)+s)

× (1− qλ(n+K)+s)(1− qr−s+Kλ+K2λ+Ks)

and further to

− 1

q2s+Kλ
(qs+Kλ − qλK2+sK+r+mλ+nλ)(qr+Kλ+K

2λ+Ks − qs)

= (1− qλK2−λK+λm+λn+r+sK−s)(1− qr−s+Kλ+K2λ+Ks),

which is true by direct expansion. Thus the proof is completed.
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Second, we deal now with ∑
n≤d≤m

Lm,dL
−1
d,n

and prove that it is 1 for n = m (there is only one term in the sum) and 0 for n > m since
we have lower triangular matrices. So let us assume m > n. We will prove a general formula
depending on an extra variable K:∑

n≤d≤K
Lm,dL

−1
d,n = qλ

K(K+1)
2

+λ
n(n−1)

2
−λnK(−1)K−n

(qλ; qλ)m−1
(qλ; qλ)n−1(qλ; qλ)m−K−1(qλ; qλ)K−n

× (qs; qλ)n+K+1(q
s; qλ)m+1

(qs; qλ)n+1(qs; qλ)m+K+1

(1− qλm+λK2+sK+λK−s+r−λn)

(1− qλm−λn)(1− qλK2+sK+λK−s+r)
.

The formula we need follows from setting K := m. Note that the RHS of formula equals 0
when K = m > n because of the term

(
qλ; qλ

)
m−K−1 in the denominator of the second row.

The proof of the formula is by induction. Clearly it is true for K = n, and the induction step
amounts to show that∑

n≤d≤K
Lm,dL

−1
d,n + Lm,K+1L

−1
K+1,n =

∑
n≤d≤K+1

Lm,dL
−1
d,n,

which equals

(qλ; qλ)m−1
(qλ; qλ)n−1(qλ; qλ)m−K−1(qλ; qλ)K−n

(qs; qλ)n+K+1(q
s; qλ)m+1

(qs; qλ)n+1(qs; qλ)m+K+1

× (1− qλm+λK2+sK+λK−s+r−λn)

(1− qλm−λn)(1− qλK2+sK+λK−s+r)
qλ

K(K+1)
2

+λ
n(n−1)

2
−λnK(−1)K−n

+
(qλ; qλ)m−1(q

λ(K+2+s; qλ)K+1

(qλ; qλ)m−K−1(qλ; qλ)K(qλ(m+1)+s; qλ)K+1

× (qλ; qλ)K(qλ(n+1)+s; qλ)K
(qλ; qλ)n−1(qλ(K+2+s; qλ)K(qλ; qλ)K+1−n

× 1− qλ((K+1)2−n)+s(K+1)−2s+r

1− qλ((K+1)2−(K+1))+s(K+1)−2s+r
1− qλ((K+1)2+m)+s(K+1)−s+r

1− qλ((K+1)2+(K+1))+s(K+1)−s+r

× qλ(
(K+1)2

2
− (K+1)

2
−n(K+1)+

n(n+1)
2

)(−1)K+1−n

=
(qλ; qλ)m−1q

λ
(K+1)(K+2)

2
+λ

n(n−1)
2
−λn(K+1)

(qλ; qλ)n−1(qλ; qλ)m−K−2(qλ; qλ)K+1−n

× (qs; qλ)n+K+2(q
s; qλ)m+1(−1)K+1−n

(qs; qλ)n+1(qs; qλ)m+K+2

× (1− qλm+λ(K+1)2+s(K+1)+λ(K+1)−s+r−λn)

(1− qλm−λn)(1− qλ(K+1)2+s(K+1)+λ(K+1)−s+r)
,

or, simplified,

− (1− qλ(K−n+1))(1− qλm+λK2+sK+λK−s+r−λn)(1− qr+2λ+3Kλ+K2λ+Ks)

× (1− qλ(m+K+1)+s) + (1− qr−s+λ+2Kλ−nλ+K2λ+Ks)(1− qλm−λn)

× (1− qr+λ+2Kλ+mλ+K2λ+Ks)(1− q2λ(K+1)+s)
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= (1− qλ(m−K−1))(1− qλ(n+K+1)+s)(1− qr−s+Kλ+K2λ+Ks)

× (1− qr+2λ+3Kλ+mλ−nλ+K2λ+Ks)qλ+Kλ−nλ,

which is a routine check. Thus we have the claimed result.

The other proofs could be done in a similar style, but are omitted here.
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