VARIANTS OF THE FILBERT MATRIX

EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. A variation of the Filbert matrix from [1] is introduced, which has one additional
Fibonacci factor in the numerator. We also introduce its Lucas counterpart by taking Lucas
numbers instead of Fibonacci numbers in a similar manner. Explicit formulee are derived for
the LU-decompositions, their inverses, the inverse matrix, as well as the Cholesky decompo-
sitions. The approach is to use g-analysis and to guess the relevant quantities, and proving
them later by induction.

1. INTRODUCTION

The Filbert matrix H,, = (hzj)njz is defined by h” = # as an analogue of the Hilbert
matrix where Fj, is the nth Fibonacci number. It has been defined and studied by Richard-
son [4].

After the Filbert matrix, several generalizations and analogues of it have been investigated
and studied by several authors. For the readers convenience, we briefly summarize these:

e In [1], Kili¢ and Prodinger studied the generalized Filbert Matrix F with entries ﬁw’

where r > —1 is an integer parameter.
e After this generalization, Prodinger [3] defined a new generalization of the generalized
Filbert matrix by introducing 3 additional parameters by taking its entries as %
1+7)+r

e Recently, in [2], Kilig¢ and Prodinger gave a further generalization of the generalized
Filbert Matrix J by defining the matrix Q with entries h;; as follows
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hij =

where r > —1 and k£ > 1 are integer parameters.

In the works summarized above, the authors derived explicit formuleae for the LU-decompos-
ition, their inverses, and the Cholesky factorization.

In this paper, we introduce two new variations of the Filbert matrix H,, and define the
matrices § and £ with entries g;; and ¢;; by

it s
Fy(itj)+s L(i+j)+s

where s,7 and A are integer parameters such that s £ r, and s > —1 and A > 1. This is the
first nontrivial instance where the numerator of the entries is not equal to zero.
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Our approach will be as follows. We will use the Binet forms
n _ Aan 1—g"
F, = ot 12— % and L,=a"+p"=a" (1+4q")
a—p l1—gq
with ¢ = B/a = —a~2, so that o = i/\/q.
Throughout this paper we will use the notation of the ¢g-Pochhammer symbol (z;q), =
(1—2)(1 —aq) - (1 — g™ ).
We rewrite the entries of the matrices § and £ in terms of the ¢g-Pochhammer symbol:

A(i+g)+r 1+ q/\(iJrj)Jrr

o wr—s, —i—s)t TG T
and t;; =1 "¢ 2 1T s

1— q)\(i+j)+s
We will derive explicit formulae for the LU-decompositions of matrices Gy and Ly, and
their inverses. Similarly to the results of [1, 2], the size of the matrices does not really
matter, and they can be thought as infinite matrices §, £ and we may restrict it whenever
necessary to the first IV rows resp. columns and write Gy and Ln. We also provide the
Cholesky decompositions. All the identities we will obtain hold for general ¢, and results
about Fibonacci and Lucas numbers come out as corollaries for the special choice of g.
Firstly, we will present all the results related to the matrix §. Second, we will give all the
results related to the matrix £. Finally we will indicate some proofs related to the matrix G.
As an illustration, we always write out the Fibonacci/Lucas case explicitly for A = 2.

2. RESULTS FOR §
We obtain the LU-decomposition § = L - U:

Theorem 2.1. For 1 <d <n we have

( A(d+1)+s. A(d?+n)+sd—s+r

I (@ ¢)n-1(q e 1-q
@ ) na(@ ) a1 (@D )y T — QAP Fd+sd—s+r

Its Fibonacci Corollary for A = 2:

Corollary 2.1. For1 <d <n,

n—1 1 d —1
Foq2 n)+sd—s+r
Lua= (T ) (HF )(HF) (I Farmes) pimstoess
t=d t=1

Fy (d?+d)+sd—s+r

Theorem 2.2. For 1 <d <n we have

e _3s,r 2
ir s+2q 5 +2+sd+>\(d d)(qA; qA)nil(qA; qA)d—l 1— q

S—T
(0% @ n—a(@ T3 gA) g (AdFDF5; gA) 4y 1-—-qk(d2‘d)+3d‘25+r(1 —7)

A(d?4n)+sd—s+r
Uin =

)

Its Fibonacci Corollary for A = 2:

Corollary 2.2. For1<d<n

d—1
( )T+d5+1( H F2t> (tHI F2t> F2(d2+n)+sd—s+rF8—T
Ujn = —

v

Cl:[l F2t> (tl;ll F2(n+t)+s) (jl:[ll FZ(d+t)+s) Fo(a2—dy+sd—2s+r |

We could also determine the inverses of the matrices L and U:
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Theorem 2.3. For 1 <d <n we have

n(n-1) _ d(d+1) _ 2 _
q/\ 5 Adn+A== (qz\; qA)n_l(qA(d+1)+s; q)\)n_l(_l)n dq_ q)\(n d)+sn—2s+r

(qA; qA)d_l(qA(n+1)+s; q’\)n—1(q’\; q/\)n—d 1— qA(n2—n)+sn—2s+r ’

-1
Ln,d =
Its Fibonacci Corollary for A = 2:
Corollary 2.3. For1 <d<n

n—1 n—1
) (—1)n7d(tl_[1 F2t> (tﬂl FQ(d+t)+s>F2(n2—d)+sn—2s+r
L .= = =

n,

n—1

(jjll th) (};[1 F2(n+t)+s> Cljj F2t) FQ(ann)Jrsanerr.

Theorem 2.4. For1 <d <n we have

A(n+1)+s A(d+1)+s

q—)\"<” D \dn +Ad<d“>+—3~§’“—sn<

q 10 )a-1(q 10 )2n—d
(@ ¢M)n-1(¢*; @) n—a(a*; @) a1

1— q)\(nQ_d)+sn—2s+7“ 1 (5= (_ymmd—1
1— q)\(n2+n)+snfs+r 1— qs—’/‘l (_ ) )

1
Ud,n -

And its Fibonacci Corollary for A = 2:

Corollary 2.4. For 1 <d<n

2n—d
( 1)n d—r— ns+1(H F2 (n)+ )( H Fy d+t)+s>F2(n2 d)+sn—2s+r
-1 _

dn — d—1

(tl;ll F2t> (tl;ll F2t) <tl;[1 F2t)F2("2+n)+S"_S+TFS_T

As a consequence, we can compute the determinant of G,,, since it is simply evaluated as
Ul,l e Un,n

Theorem 2.5.

det G, = (_1)nin(r—s)q%n(n+1)(3s+2)\(n—1))+w(1 - qs—r)n

y 12[ (q :q ) 1 q)\(d2+d)+sd—s+r
d:l A(d+1) +s ) ( )\(d+1)+s; q)\)d—l 1— q)\(d2—d)+sd—25+r ’

Its Fibonacci Corollary for A =

Corollary 2.5.
d—1

det G,, = (_1)n(r+1)+(n;1)sF:7T H 2(d?+d)+sd—s+r - 2t )
iy s Fog@2—dyvsd—2s4r -7 Foare4s
Now we compute the inverse of the matrix §. This time it depends on the dimension, so we
compute (Gn)~*
Theorem 2.6. For 1 <n,d < N:
A(d+1)+s. q/\) ( A(n+1)+

1 (¢
(9N)n,d = (q/\;q)\)d_l(q/\;q Yn— 1(q 1 q )

SN
n(@; M) N—d
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d(d+1 n(n+1 35—
is—r(_1)n—d—1qz\%+)\%—)\Nd—>\Nn+3 75N | _ AN 4N —n—d)+sN—2s+r

X (1 _ qA(n+d)+s)(1 _ qsfr) 1— q)\(N2+N)+sN—s+r

Remark. The inverse matrix was not computed using the inverses of L and U, but rather
obtained directly by our usual guessing strategy. While the first alternative would mean that
we would have to simplify a sum, the second approach stays within our chosen method. This
remark applies as well to the Lucas case that is discussed in the next section.

Its Fibonacci Corollary for A = 2:

Corollary 2.6. For 1 <n,d < N:

N N
Faaroyts) (I Pagutey s ndr
<tl;[1 2d )+ }31 2 +t)+) (=)™ By N2y N d)+sN—2s

d—1 n—1 N—n N—d F F_F B
<H F2t) < 11 F2t>< I1 F2t)< II th) 2k s Temr TANTEN ) Fo N sty
t=1 t=1 t=1 t=1

Finally, we provide the Cholesky decomposition.

Theorem 2.7. Fori,j > 1:

sy \AAZD) | SSshr g sd gy
1 2 2 4 2 —1 2 —
. 4 q 919" )n (1 q/\(d +n)+sd s+r>

’ (D55 6M)a(0Y; ¢ n-d

(1 _ q2)\d+s)(1 _ qsfr)
X (1 _ qA(d2+d)+sd—s+T)(1 _ q)\(dz—d)+sd—2s+7‘) ’
Its Fibonacci Corollary for A = 2:

Corollary 2.7. Fori,j > 1:

n—1 d -1
Gmd — ir+s(d—2)+1< H F2t> (H FQ(n+t)+s>
t=n—d+1 t=1

F4d+stfr

X F2(d2+n)+sdfs+7' :
F2(d2+d)+sdfs+rF2(d2fd)+sd723+r

3. RESULTS FOR £

Now we collect our results related to the matrix £.
For convenience, we use the same letters L, U, C, but with the different meaning.
We obtain the LU-decomposition £L =L - U:

Theorem 3.1. For 1 < d <n we have

. (q’\; q)\>n_1(_q)\(d+1)+s; Q’\)d 1 — (_1)dqz\(d2+n)+sdfs+r
n,d —

(@M aN)n—d(@ @) a1 (A TITE ) g 1 - (—1)dgNErd) Fsd st

Its Fibonacci Corollary for A = 2:
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Corollary 3.1. For1<d <mn,

n—1 d
a2 n)+sd—s+r . .
(H F2t> (Hl L2(t+d)+s) At if ] s even,
t=d =

2(d2+4d)+sd—s+r

= X
n,d n—d

d
(H F2t) <H L2(t+n)+s) M if d is odd.
t=1 t=1

2(d2 +d)+sd—s+r

Theorem 3.2. For1 <d <n we have

r—3s

q 2 +/\d(d—1)+dsir78( 1)d(
(@ @M n—a(—gNdtD+s: ¢

Ud,n =

-1 ¢)a—
Ma—1(—q ”H)“,qk)d
1-— (—l)qu(dern)JrSdferr
S—T
T (C1)dgh@- s oy L= @)

Its Fibonacci Corollary for A = 2:

Corollary 3.2. For 1 <d<n

(_1)T+d(5+1) (nﬁl th) (dﬁl F2t> Fy_, 5dF2(d2+n)+sdfs+r

U _ t=1 t=1 y L2(d27d)+sd72s+r
dn n—d p 1

(}31 E 2t> <t131 L2<n+t)+s) (tlle L2(d+t)+s) P Lanssaet it g i odd,

F2(d2 —d)+sd—2s+r

if d is even,

We could also determine the inverses of the matrices L and U:

Theorem 3.3. For 1 <d <n we have

)\n(nfl) _\d )\d(d+1) AN
N (T

7 -1 (=M M), g (—1)n e
(@50 a=1(a%; @) n—a(— A FD+s;¢A),

-1
Ln,d

14+ (_1)nq)\(n27d)+sn72s+r
1+ (_1)” q)\(nz—n)+sn—25+r ’

X

Its Fibonacci Corollary for A = 2:

Corollary 3.3. For1 <d<n

n—1 n-1 FZ(n2—d)+sn—25+r . .
(—1)d+n( I1 F2t> ( I1 L2(d+t)+s) T if nis odd,
-l — t=1 t=1 % 2(n2—n)+sn—2s+r
nd T d—1 n n—1

(tl;ll FZt) (tljj F2t> <t1;[1 L2(n+t)+s> Lot —dyran—2asr if n is even.

LQ(n27n)+sn72s+r
Theorem 3.4. For 1 <d <n we have

. °iq )
Ud,n =

is_r(—l)d( q A(d+1)+s. q) ( q>\ n+1)+s
(1= ¢* ") (@ ¢*)a- (A Mn-a(@; ¢ )n—

2_
1)n A(n®—d)+sn—2s+r Bs=r_yn(n=1) |y d(d+1)
2 2 2

( —ns—Adn
( 1)n An(n+1)+sn—s+r q ’
2:

And its Fibonacci Corollary for A =
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Corollary 3.4. For1 <d<n

nl s FQ(n27d)+sn723+r . .
(174 (1 Latesaes) (11 Patemns) | 51 if n is odd
1 _ t=1 t=1 % 2(n24n)+sn—s+r
o L2(n27d)+snf2s+r

if n is even.

n—1 n—d d—
(T0 2 (T1 F) (T ) P -
t=1 t=1 t=1 b 2(n24n)+sn—s+r
As a consequence, we can compute the determinant of £,,, since it is simply evaluated as
Uig---Upn (we only state the Fibonacci version for A = 2):

Theorem 3.5.

n 1 d—1 F2
det £,, = 5%n(n+(—1)d)(_1)nrin(s+1)(n+1)aniT H 5 2t
de1 L4d+s =1 L2(d+t)+s

F2(d2+d)+sd—s+7"
LQ(d2 —d)+sd—2s+r

if d is even,

L _
2(d2+d)+sd—s+r if d is odd.
Fy@2—a)1sd—2s+4r

Now we compute the inverse of the matrix £. This time it depends on the dimension, so

we compute (L)~}
Theorem 3.6. For1<d<n<N:

(L )71 (_q)\(n+1)+s;q/\)N( q)\(d+1) ,Q)
Nnd = (A N1 (@ a1 (0 )N —n (@ M)

g _ d(d+1) | yn(ntl) _ 3s—r _
i r(_l)n d+Nq>\ 5 +A 5 ANd—ANn+ 5 sN1+( 1)

q
x (1 — g 7)(1 + gMntd)+s) 1 — (—=1)NgAN?+N)+sN—str

AMN?4+N—-n—d)+sN—2s+r

Its Fibonacci Corollary for A = 2:
Corollary 3.5. For 1 <d<n < N:

)t _ <H Lo+ ) (H Ly n+t]\j—s()l .

| <tl;[1 FQt) (tl;[l F2t> ( tl;[l FQt) <t1;[1 FQt)

FS*T'LQ(n—I—d)—i—s

Lon2—a
—d)+sn—2s+ . .
(n?—d)sn—2str if N is even,

N
y 5 FQ(n2+n)+sn—s+7‘

F. e -
]2\§§12+N n—d)+sN—2s+r if N is odd.
5 L2(N2+N)+SN—3+7"

Finally, we provide the Cholesky decomposition.
Theorem 3.7. Forn,d > 1:
(1-— (_1)dq)\(d2+n)+sdfs+r) (q’\; qA) )
ne

((]’\; q)\)n—d (_q)\(n+1)+8; q)\)d

M) g A S o

end:

)
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y (1 + q2)\d+s)(1 _ qsfr)
(1— (_1)dq)\(d2+d)+sd—s+r)(1 4 (_1)dq)\(d2—d)+sd—25+7‘)'
Its Fibonacci Corollary for A = 2:
Corollary 3.6. Forn,d > 1:

n—1 d —1
en7d — i7‘+ds<_1)8+15d/2 ( H FQt) (H L2(n+t)+s) 1/ L4d+st—7’
t=1

t=n—d+1
1 . .
Fy@2n)+sd—str = 7 if d is even,
\/ 2(d?2+4-d)+sd—s+r2(d2—d)+sd—2s+r
X
1 o
Loz 4n)+sd—s+r T = if d is odd.
\/ 2(d2+d)+sd—s+r+2(d?>—d)+sd—2s+r

4. PROOFS

We start with an introductory remark. For all the identities that we need to prove, exper-
iments indicate that they are Gosper-summable. However, the entries that we encounter in
our instances, do not qualify for the g-Zeilberger algorithm that we used in our earlier papers.
Therefore, it was necessary to guess the relevant quantities; the justification is then complete
routine. However, this guessing procedure is (with all the parameters involved) extremely time
consuming, and so we confined ourselves to the demonstration of two such proofs. We hope
that extensions of the g-Zeilberger algorithm will be developed that fit our needs.

First, we show that ; L, U} is indeed the matrix G, that is,

A(
_ sr—s, —1(r—s) l1—gq
E : LmdUdm =1 q 2 1— q/\(m+n)+s :
1<d<min{m,n}

Since the formula is symmetric in m and n, we can assume without loss of generality that
m > n.
However we have in fact a more general formula:

1
Z Lm,dUd,n = lr—sq—g(r—s)
K<d<n

2
AK?AK 45K —s 1— q)\K —AK+Am+An+r+sK—s 1— qr—s

4 1 — MK AK+r+sK—2s 1 — grmtAnts

(@ aM)m—1(a N)n-1(0% ¢)m+1(2%; ¢ )ns1
(@ ¢)m-k (0% @)n-k (0% @ )m+ k(0% 4 )nt K
The formula we need follows from setting K := 1.

We use (backward) induction to prove the more general formula. Clearly it is true for
K = n, and the induction step amounts to show that

X

Lin ik Uscn + 17 75q~ 2078 AP AE D es(B 1) s
1— q)\(K+1)2—)\(K+1)+)\m+/\n+r+s(K+1)—s 1— qr—s

X 1— q)\(K+1)2—)\(K+1)+T+s(K+1)—23 1— q)\m+)\n+s
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y (@ ) m—1(0 ) n-1(0% ) m+1(0% )t
(0% @) m-r-1(0%; @)n-k-1(2% @) ma (5 +1) (%5 @)t (k11
i qf%(rfs)q)\KQf)\K+sts
y 1— qAK2—)\K+)\m+)\n+T+sK—s 1— qr—s
1— q)\KQ—)\K+r+sK—2s 1— q)\m+/\n+s
o @50 1(5 )1 (6% ) ma1 (65 )i
(@ ) m—k (@5 ) -k (%5 ) m+- k(0% P )nt i

By the definition of the matrices Ly, ,, and Uy, ,, the above equation takes the following form:

2
(q)\; q)\)m_l(q)\(K+l)+s; qA)K 1— q)\(K +m)+sK—s+r
(@ ¢)m-r (0% ) k-1 (A HIF N o 1 — U HEOFs K —sr
_3s 1T 2_ _
q 2 +5+sK+AK K)(q)\; qA)nq(qA; q)‘)K—l(l — ¢ r)

77 2(2 M) - (@D ) o (PAEFDHS A ey
1— q)\(K2+n)+sts+r

1— q/\(K2—K)+sK—25+7"
+ irfsqf%(rfs)q)\(K+1)2f)\(K+1)+s(K+1)fs

1— qA(K—H)Q—A(K+1)+)\m+)\n+r+s(K+1)—s (1

o q'I‘—S)
KT S PETDE AR bs(K )25 ] — ghmAants
y (0 m-1(a% ¢)n-1(2°; @) m+1(¢°; )41
A

(@ aM)m-k-1(0% ¢ n—r—-1(4% @) mt-(k+1) (€% ) (5 +1)
_ irfsqfé(rfs) q)\Kzf)\K#»sts
y 1— q)\K2—)\K+)\m+)\n+r+sK—s 1— qr—s
1— q)\KQ—/\K+r+sK—2s 1— q)\m+)\n+s
o (250 m 1 (@016 ) mr1 (% 0
(@ ) m—x (@5 )k (0% ) mr k(6% ¢ )ik

which, after some simplifications using the definition of the g-Pochhammer symbol, is equiva-
lent to

(1 _ qs+2K)\)(1 _ q)\(K2+m)+sK—s+'r)(1 _ q)\m—l—)\n—i—S)(l _ qA(K2+n)+sK—s+r)

+ qs+2K)\(1 _ qr+K)\+m)\+n)\+K2/\+Ks)(1 _ qA(m—K))

x (1— q)\(n—K))(l . q)\KQ—)\K-‘rT-‘rSK—QS)
=(1- q,\KZ—AK+/\m+An+r+sK—5)(1 . q>\(m+K)+s)

x (1— qA(n+K)+S)(1 _ qr—s+K>\+K2/\+K3)
and further to

1
q23+K)\

(qS-‘rK)\ _ qAK2+5K+r+m)\+n>\)(qr+K)\+K2)\+Ks —¢)

— (1 o qAK2—)\K+)\m+/\n+r+sK—s)(1 o qr—s+K)\+K2>\+Ks)
)

which is true by direct expansion. Thus the proof is completed.
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Second, we deal now with
Y Lmalg,
n<d<m
and prove that it is 1 for n = m (there is only one term in the sum) and 0 for n > m since
we have lower triangular matrices. So let us assume m > n. We will prove a general formula
depending on an extra variable K:

Z L L7 _q,\wM%—Anl{(_l)K—n (0% ¢ m—1
m, d,?’L -

Tk (@ )10 M) m-r-1(¢* ¢ k—n

(¢°; qA)n+K+1(q5; C_I)\)m+1 (1— q)\m+/\K2+sK+)\K—s+r—)\n)
(@°30)n+1(0% @) mr k41 (1 — Am=An) (1 — M HsKAAK —sbr) -

The formula we need follows from setting K := m. Note that the RHS of formula equals 0
when K = m > n because of the term (q>‘; qA)m_ ), in the denominator of the second row.
The proof of the formula is by induction. Clearly it is true for K = n, and the induction step
amounts to show that

—1 —1 —1
> Lmalgh+Imkiili, = D, Lmalgh,
n<d<K n<d<K+1

which equals

(@ ¢ m—1 (€% )tk +1(0%5 ¢ ) ms1

(@5 a)n-1(0% ) m—xk-1(0 ¢ k—n (€% ¢)n+1(¢% @) mr k41
(1 _ qu+)\K2+sK+)\Kfs+r7)\n)

/\@H@—AM((_I)K%

(1 _ q)\mf)\n)(l _ q)\K2+sK+)\Kfs+r)

(@ @) m—1 (PEFEs )

+ K+1
(@ ) m—k-1(0*; @) g (DT ) g
(5 )k (PTIFs ) g

X

(05 M1 (PEF2H5 M) g (62 ¢ K +1-n
1 — qA((K+1)2—n)+s(K+1)—2s+r 1—gq

X 1— q)\((K+1)2f(K+1))+s(K+1),25+r 1— q)\((K+1)2+(K+1))+3(K+1)75+r

AM(K+1)24+m)+s(K+1)—s+r

(K+1)2  (K+1) n(n+1)

(K+1)(K+2) | y n(n—1)
(q’\;q’\)mflqA 5 AT = (K+1)

(@) 100 6N ek —2(¢% 4N K+1-n
(€% @M ntk+2(0% ¢ )mpr (1) E ™
(0% @M n+1(0% @) mt K 12
(1— q)\m—i-)\(K—i-l)2+s(K+1)+A(K+1)—s+T—)\n)

X

(1 _ q)\mf)\n)(l _ qA(K+1)2+s(K+1)+)\(K+1)ferr)’

or, simplified,
_ (1 _ qA(K—n—H))(l _ q/\m+>\K2+sK+)\K—s+r—)\n)(1 _ qr+2)\+3K>\+K2)\+Ks)

« (1 _ qA(m+K+1)+5) + (1 _ qrfs+)\+2K)\fn)\+K2)\+K5)(1 _ )\mf/\n)

q

2
% (1 - qr+)\+2K)\+m)\+K )\+K5)(1 - q2)\(K+1)+5)
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m—K— n s r—s 2 s
_ (1 _ q>\( K 1))(1 _q)\( +K+1)+ )(1 o +KM-KA+K )

q

7#2A+3KA+mAan+K?A+K3) A+FEKA—n\
)

x(1—gq q
which is a routine check. Thus we have the claimed result.

The other proofs could be done in a similar style, but are omitted here.
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