
THE GENERALIZED LILBERT MATRIX

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract. We introduce a generalized Lilbert [Lucas-Hilbert ] matrix. Explicit formulæ
are derived for the LU-decomposition and their inverses, as well as the Cholesky decom-
position. The approach is to use q-analysis and to leave the justification of the necessary
identities to the q-version of Zeilberger’s celebrated algorithm.

1. Introduction

The Filbert matrix Hn =
(
ȟij
)n
i,j=1

is defined by ȟij = 1
Fi+j−1

as an analogue of the

Hilbert matrix where Fn is the nth Fibonacci number. It has been defined and studied by
Richardson [7].

After the Filbert matrix, several generalizations and analogues of it have been investi-
gated and studied by Kılıç and Prodinger. For the readers convenience, we briefly summa-
rize these generalizations:

• In [1], Kılıç and Prodinger studied the generalized Filbert Matrix F with entries
1

Fi+j+r
, where r ≥ −1 is an integer parameter.

• After this generalization, Prodinger [6] defined a new generalization of the general-
ized Filbert matrix by introducing 3 additional parameters by taking its entries as

xiyj

Fλ(i+j)+r
.

• Recently, in [2], Kılıç and Prodinger gave a further generalization of the generalized
Filbert Matrix F by defining the matrix Q with entries hij as follows

hij =
1

Fi+j+rFi+j+r+1 . . . Fi+j+r+k−1
,

where r ≥ −1 is an integer parameter and k ≥ 0 is an integer parameter.
• In a further paper [4], Kılıç and Prodinger introduced a new kind of generalized

Filbert matrix G with entries gij by

gij =
1

Fλ(i+j)+rFλ(i+j+1)+r . . . Fλ(i+j+k−1)+r
,

where r ≥ −1 and λ ≥ 1 are integer parameters.
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• More recently, in [3], Kılıç and Prodinger introduced four generalizations of the
Filbert matrix Hn, and defined the matrices P, K, L and Y with entries

pij =
1

Fλi+µj+r
, kij =

Fλi+µj+r
Fλi+µj+s

, `ij =
1

Lλi+µj+r
and yij =

Lλi+µj+r
Lλi+µj+s

,

respectively, where s, r, λ and µ are integer parameters such that s 6= r, and r, s ≥
−1 and λ, µ ≥ 1.

In the works summarized above, the authors derived explicit formulæ for the LU-
decomposition (For any square matrix A, a decomposition A = LU, where L is a unit
lower triangular matrix and U is an upper triangular matrix, is called LU-decomposition
of A) for the matrices mentioned above. Also they derived explicit formulæ their inverses.

Let {Un} and {Vn} be generalized Fibonacci and Lucas sequences, respectively, whose
the Binet forms are

Un =
αn − βn

α− β
= αn−1

1− qn

1− q
and Vn = αn + βn = αn (1 + qn)

with q = β/α = −α−2, so that α = i/
√
q.

When α = 1+
√
5

2
(or equivalently q = (1−

√
5 )/(1 +

√
5 ) ), the sequence {Un} is reduced

to the Fibonacci sequence {Fn} and the sequence {Vn} is reduced to the Lucas sequence
{Ln} .

When α = 1+
√

2 (or equivalently q = (1−
√

2 )/(1+
√

2 ) ), the sequence {Un} is reduced
to the Pell sequence {Pn} and the sequence {Vn} is reduced to the Pell-Lucas sequence
{Qn} .

In this paper, we define the Lilbert matrix T with entries tij by

tij =
1

Lλ(i+j)+rLλ(i+j+1)+r . . . Lλ(i+j+k−1)+r
.

Throughout this paper we will use the following notations: the q-Pochhammer symbol
(x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and for z > 1, the Gaussian q-binomial coefficients[

n

k

]
(z,y)

=
(qz; qy)n

(qz; qy)k(qz; qy)n−k

and for the case z = y, we will denote the Gaussian q-binomial coefficients as[
n

k

]
z

=
(qz; qz)n

(qz; qz)k(qz; qz)n−k
.

We could also allow z ≥ 1, but might have to take limits in some rare cases.
Furthermore, we will use generalized Fibonomial coefficients{

n

k

}
U(a,b)

=
Ub(n−1)+aUb(n−2)+a . . . Ub(n−k)+a
UaUb+aU2b+a . . . Ub(k−1)+a

with
{
n
0

}
U(a,b)

= 1 where Un is the nth generalized Fibonacci number.
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For a = b, we denote the generalized Fibonomial coefficients as
{
n
k

}
U(a)

. Especially for

a = b = 1, the generalized Fibonomial coefficients are denoted by
{
n
k

}
U
. When Un = Fn,

the generalized Fibonomial reduces to the Fibonomial coefficients denoted by
{
n
k

}
F

:{
n

k

}
F

=
FnFn−1 . . . Fn−k+1

F1F2 . . . Fk
.

Similarly, when Un = Pn, the generalized Fibonomial reduces to the Pellnomial coefficients
denoted by

{
n
k

}
P

: {
n

k

}
P

=
PnPn−1 . . . Pn−k+1

P1P2 . . . Pk
.

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is{
n

k

}
(z,y)

= αyk(n−k)
[
n

k

]
(z,y)

with q = −α−2.

Furthermore, we will use generalized Lucanomial coefficients〈
n

k

〉
V (a,b)

=
Vb(n−1)+aVb(n−2)+a . . . Vb(n−k)+a
VaVb+aV2b+a . . . Vb(k−1)+a

with
〈
n
0

〉
(a,b)

= 1 where Vn is the nth generalized Lucas number.

For a = b, we denote the generalized Lucanomial coefficients as
〈
n
k

〉
V (a)

. Especially for

a = b = 1, the generalized Lucanomial coefficients are denoted by
〈
n
k

〉
V
. When Vn = Ln,

the generalized Lucanomial coefficients are reduced to the Lucanomial coefficients denoted
by
〈
n
k

〉
L

: 〈
n

k

〉
L

=
LnLn−1 . . . Ln−k+1

L1L2 . . . Lk
.

When Vn = Qn, the generalized Lucanomial coefficients are reduced to the Pell-Lucanomial
coefficients denoted by

〈
n
k

〉
Q

: 〈
n

k

〉
Q

=
QnQn−1 . . . Qn−k+1

Q1Q2 . . . Qk

.

The link between the generalized Lucanomial and Gaussian q-binomial coefficients is〈
n

k

〉
V (z,y)

= αyk(n−k)
[
n

k

]
(−z,y)

with q = −α−2.

Considering the definitions of the matrix T and the q-Pochhammer symbol, we rewrite
the matrix T = [tij] as

tij = ik(λ(i+j)+r)+
λk(k−1)

2 q−
k
2
(λ(i+j)+r)−λk(k−1)

4

(
−qλ(i+j)+r; qλ

)
k
.

We call the matrix Tn the generalized Lilbert matrix.
We will derive explicit formulæ for the LU-decomposition for the matrix Tn. We also

derive explicit formula for its inverse. Similarly to the results of [1, 2, 4, 6], the size of the
matrix does not really matter, and one can think about an infinite matrix T and restrict
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it whenever necessary to the first n rows resp. columns and write Tn. The entries of the
inverse matrix T−1n are not closed form expressions, as in our previous paper [1, 2], but can
only be given as a (simple) sum. We also provide the Cholesky decomposition. All the
identities we will obtain hold for general q, and results about Lucas and Fibonacci numbers
as well as Pell numbers etc., come out as corollaries for a special choice of q.

Firstly, we mention our general results depending on λ and then give their specializaitons
for λ = 1. After that, we give examples of these results for the Lucas and Pell-Lucas
numbers by taking special cases of q.

We will obtain the LU-decomposition T = L · U :

Theorem 1. For 1 ≤ d ≤ n we have

Ln,d = iλk(d−n)q
λk(n−d)

2

[
2d+ k − 1

d

]
(−qλ+r;qλ)

[
n+ d+ k − 1

n

]−1
(−qλ+r;qλ)

[
n− 1

d− 1

]
(qλ;qλ)

.

Its generalized Fibonacci-Lucas corollary:

Corollary 1. For 1 ≤ d ≤ n,

Ln,d =

〈
2d+ k − 1

d

〉
V (λ+r,λ)

〈
n+ d+ k − 1

n

〉−1
V (λ+r,λ)

{
n− 1

d− 1

}
U(λ)

.

As a consequence of Theorem 1 for λ = 1, we have

Corollary 2. For 1 ≤ d ≤ n,

Ln,d = ik(d−n)q
k(n−d)

2

[
2d+ r + k − 1

d+ r

]
(−q;q)

[
n+ d+ r + k − 1

n+ r

]−1
(−q;q)

[
n− 1

d− 1

]
(q;q)

.

In the λ = 1 case, its generalized Fibonacci-Lucas corollary:

Corollary 3. For 1 ≤ d ≤ n,

Ln,d =

〈
2d+ r + k − 1

d+ r

〉
V

〈
n+ d+ r + k − 1

n+ r

〉−1
V

{
n− 1

d− 1

}
U

From the corollaries above, we have the following examples: For r = 1 and q =(
1−
√

5
)
/
(
1 +
√

5
)
, we obtain a Fibonacci and Lucas consequence of Corollary 3:

Ln,d =

〈
2d+ k

d+ 1

〉
L

〈
n+ d+ k

n+ 1

〉−1
L

{
n− 1

d− 1

}
F

.

For r = 0 and q =
(
1−
√

2
)
/
(
1 +
√

2
)
, we obtain a Pell and Pell-Lucas consequence of

Corollary 3:

Ln,d =

〈
2d+ k − 1

d

〉
Q

〈
n+ d+ k − 1

n

〉−1
Q

{
n− 1

d− 1

}
P

.

Theorem 2. For 1 ≤ d ≤ n we have

Ud,n = (−1)d−1i−λk(d+n)−
λk2

2
+λk

2
−krq

λk(d+n)
2

+
λk(k−1)

4
−λd+λd2+r(d−1)+ rk

2
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×
[
d+ n+ k − 1

n

]−1
(−qλ+r;qλ)

[
d+ k − 2

k − 1

]
(qλ;qλ)

[
n− 1

d− 1

]
(qλ;qλ)

(qλ; qλ)2d−1
(−qλ+r; qλ)2d+k−2

.

As a generalized Fibonacci-Lucas corollary of Theorem 2, we have

Corollary 4. For 1 ≤ d ≤ n

Ud,n = (−1)(1+d)(1−λ+r) (α− β)2(d−1)
〈
d+ n+ k − 1

n

〉−1
V (λ+r,λ)

×
{
d+ k − 2

k − 1

}
U(λ)

{
n− 1

d− 1

}
U(λ)

(2d+k−2∏
t=1

Vtλ+r

)−1(d−1∏
t=1

Utλ

)2

.

As a consequence of Theorem 2 for λ = 1, we have

Corollary 5. For 1 ≤ d ≤ n

Ud,n = (−1)i−1i−k(d+n)−
k2

2
+ k

2
−krq

k(d+n)
2

+
k(k−1)

4
−d+d2+r(d−1)+ rk

2

×
[
2d+ r + k − 2

d− 1

]−1
(−q;q)

[
d+ n+ r + k − 1

n+ r

]−1
(−q;q)

×
[
2d+ k − 2

d− 1

]
(−q;q)

[
d+ k − 2

k − 1

]
(q;q)

[
n− 1

d− 1

]
(q;q)

(q; q)2d−1
(−q; q)2d+k−2

.

And its generalized Fibonacci-Lucas corollary:

Corollary 6. For 1 ≤ d ≤ n

Ud,n = (−1)(d−1)r (α− β)2(d−1)

×
〈

2d+ r + k − 2

d− 1

〉−1
V

〈
d+ n+ r + k − 1

n+ r

〉−1
V

〈
2d+ k − 2

d− 1

〉
V

×
{
d+ k − 2

k − 1

}
U

{
n− 1

d− 1

}
U

(d−1∏
t=1

Ut

)2(2d+k−2∏
t=1

Vt

)−1
.

From the Corollaries above, we give the following examples:
For r = 1 and q =

(
1−
√

5
)
/
(
1 +
√

5
)
, we obtain a Fibonacci and Lucas consequence of

Corollary 6:

Ud,n = (−1)d−1 5d−1
〈

2d+ k − 1

d− 1

〉−1
L

〈
d+ n+ k

n+ 1

〉−1
L

〈
2d+ k − 2

d− 1

〉
L

×
{
d+ k − 2

k − 1

}
F

{
n− 1

d− 1

}
F

(d−1∏
t=1

Ft

)2(2d+k−2∏
t=1

Lt

)−1
.
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For r = 0 and q =
(
1−
√

2
)
/
(
1 +
√

2
)
, we obtain a Pell and Pell-Lucas consequence of

Corollary 6:

Ud,n = 2d−1
〈

2d+ k − 2

d− 1

〉−1
Q

〈
d+ n+ k − 1

n

〉−1
Q

〈
2d+ k − 2

d− 1

〉
Q

×
{
d+ k − 2

k − 1

}
P

{
n− 1

d− 1

}
P

(d−1∏
t=1

Pt

)2(2d+k−2∏
t=1

Qt

)−1
.

We could also determine the inverses of the matrices L and U :

Theorem 3. For 1 ≤ d ≤ n we have

L−1n,d = i−λk(n−d)(−1)n−dq
λ(n−d)(n−d+k−1)

2

×
[
2n+ k − 2

n

]−1
(−qλ+r;qλ)

[
n+ d+ k − 2

d

]
(−qλ+r;qλ)

[
n− 1

d− 1

]
(qλ;qλ)

.

Its generalized Fibonacci-Lucas corollary:

Corollary 7. For 1 ≤ d ≤ n

L−1n,d = iλ(d
2+d−1−n)(−1)n−d−λnd

×
〈

2n+ k − 2

n

〉−1
V (λ+r,λ)

〈
n+ d+ k − 2

d

〉
V (λ+r,λ)

{
n− 1

d− 1

}
U(λ,λ)

.

As a consequence of Theorem 3 for λ = 1, we have

Corollary 8. For 1 ≤ d ≤ n

L−1n,d = i−(k+2)(n−d)q
(n−d)(n−d+k−1)

2

×
[
n+ d+ r + k − 2

d+ r

]
(−q;q)

[
2n+ r + k − 2

n+ r

]−1
(−q;q)

[
n− 1

d− 1

]
(q;q)

.

Its generalized Fibonacci-Lucas corollary:

Corollary 9. For 1 ≤ d ≤ n

L−1n,d = id(d+1)−n−1 (−1)d(n+1)−n

×
〈
n+ d+ r + k − 2

d+ r

〉
V

〈
2n+ r + k − 2

n+ r

〉−1
V

{
n− 1

d− 1

}
U

.

Thus we have the following example: for λ = 1, r = −2 and q =
(
1−
√

5
)
/
(
1 +
√

5
)
,

L−1i,j = ij(j+1)−i−1 (−1)ij+j−i
〈
i+ j + k

j + 2

〉
L

〈
2i+ k

i+ 2

〉−1
L

{
i− 1

j − 1

}
F

.
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Theorem 4. For 1 ≤ d ≤ n we have

U−1d,n = iλk(d+n+r)+λ(
k
2)(−1)d−1q

−λ(n−d+k−1)(n+d)
2

−λdn−rn−λk(k−1)
4
− rk

2
+r

×
[
n+ d+ k − 2

d− 1

]
(−qλ+r;qλ)

[
n− 1

d− 1

]
(qλ;qλ)

[
n+ k − 2

k − 1

]−1
(qλ;qλ)

× (−qλ+r; qλ)2n+k−1
(1 + qλd+r)

1

(qλ; qλ)2n−1
.

And its generalized Fibonacci-Lucas corollary:

Corollary 10. For 1 ≤ d ≤ n

U−1d,n = (−1)r(1−n)+(1+d)−dnλ i(d−1+(1−n)n+kr)λ−kr (α− β)−2(n−1)

×
〈
n+ d+ k − 2

d− 1

〉
V (λ+r,λ)

{
n− 1

d− 1

}
U(λ)

{
n+ k − 2

k − 1

}−1
U(λ)

×
( 2n+k−1∏

t=1

Vtλ+r

)(n−1∏
t=1

Utλ

)−2
1

Vλd+r
.

For λ = 1, as a consequence of Theorem 4, we have

Corollary 11. For 1 ≤ d ≤ n

U−1d,n = ik(d+n+r)+(k2)(−1)d−1q
−(n−d+k−1)(n+d)

2
−dn−rn− k(k−1)

4
− rk

2
+r

×
[
2n+ r + k − 1

n

]
(−q;q)

[
2n+ k − 2

n

]−1
(−q;q)

[
d+ n+ r + k − 2

d+ r

]
(−q;q)

×
[
n− 1

d− 1

]
(q;q)

[
n+ k − 2

k − 1

]−1
(q;q)

(−q; q)2n+k−2
(q; q)2n−1

.

And its generalized Fibonacci-Lucas corollary:

Corollary 12. For 1 ≤ d ≤ n

U−1d,n = (−1)d−1−dn+r−nrid−n(n−1)−1 (α− β)−2(n−1)

×
〈

2n+ r + k − 1

n

〉
V

〈
2n+ k − 2

n

〉−1
V

〈
d+ n+ r + k − 2

d+ r

〉
V

×
{
n− 1

d− 1

}
U

{
n+ k − 2

k − 1

}−1
U

(n−1∏
t=1

Ut

)−2(2n+k−2∏
t=1

Vt

)
.

Especially for λ = r = 1 and q =
(
1−
√

5
)
/
(
1 +
√

5
)
,

U−1d,n = (−1)d−dn−nid−n(n−1)−151−n
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×
〈

2n+ k

n

〉
L

〈
2n+ k − 2

n

〉−1
L

〈
d+ n+ k − 1

d+ 1

〉
L

×
{
n− 1

d− 1

}
F

{
n+ k − 2

k − 1

}−1
F

(n−1∏
t=1

Ft

)−2(2n+k−2∏
t=1

Lt

)
.

As a consequence, we can compute the determinant of Tn, since it is simply evaluated
as U1,1 · · ·Un,n :

Theorem 5.

detTn = i−
λk2

2
+λk

2
−kr+n(n+3)−kλn(n+1)

× q
λn(n+1)(2n+1)

6
+
λk(k−1)

4
−r+ rk

2
+ 1

2
n(n+1)(λk−λ+r) (qλ; qλ)2d−1

(−qλ+r; qλ)2d+k−2

×
n∏
d=1

[
2d+ k − 1

d

]−1
(−qλ+r;qλ)

[
d+ k − 2

k − 1

]
(qλ;qλ)

.

Its generalized Fibonacci and Lucas corollary

detTn = i(1−λ+r)n(n+3) (α− β)
n(n−1)

2

(2d+k−2∏
t=1

Vtλ+r

)−1(d−1∏
t=1

Utλ

)2

×
n∏
d=1

〈
2d+ k − 1

d

〉−1
V (λ+r,λ)

{
d+ k − 2

k − 1

}
U(λ)

.

For q =
(
1−
√

5
)
/
(
1 +
√

5
)
, λ = 1 and r = 0, we easily see that

detTn = 5
n(n−1)

2

n∏
d=1

〈
2d+ k − 2

d− 1

〉−1
L

〈
2d+ k − 1

d

〉−1
L

×
〈

2d+ k − 2

d− 1

〉
L

{
d+ k − 2

k − 1

}
F

(d−1∏
t=1

Ft

)2(2d+k−2∏
t=1

Lt

)−1
.

Now we compute the inverse of the matrix T. This time it depends on the dimension,
so we compute (Tn)−1.

Theorem 6. For 1 ≤ i, j ≤ n:(
(Tn)−1

)
i,k

= iλ(
k
2)+λk(i+r)+λkj(−1)i−1−jq−

λk(k−1+2j)
4

− rk
2
+r−λ(i(k−1)+1)

2
+
λj(1+j)

2

× 1

(−qλ+r; qλ)i (−qλ+r; qλ)k−1 (−qλ+r; qλ)j (qλ; qλ)j−1 (qλ; qλ)i−1

×
∑

max{i,j}≤h≤n

(−1)hq−
1
2
hλ(j+2i)−rh

(
−qλ+r; qλ

)
h+i+k−2

(
−qλ+r; qλ

)
h+j+k−2

(qλ; qλ)h−i (q
λ; qλ)h−j
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×
(1 + qλ(2h+k−1)+r)

(
1 + qλh+r

)
(1 + qλ(h+k−1)+r)

.

Finally, we provide the Cholesky decomposition.

Theorem 7. For i, j ≥ 1:

Ci,j = i−
rk
2
−λk(k−1)

4
+λki+j−1q

λik
2

+
λj(j−1)

2
+
λk(k−1)

8
− r

2
+ rj

2
+ rk

4

×
[
i+ j + k − 1

i

]−1
(−qλ+r;qλ)

[
i− 1

j − 1

]
(qλ;qλ)

(qλ; qλ)j−1

×
√[

2j + k − 1

j

]
(−qλ+r;qλ)

1

(−qλ+r; qλ)2j+k−2

[
j + k − 2

k − 1

]
(qλ;qλ)

.

Its generalized Fibonacci-Lucas Corollary:

Corollary 13. For i, j ≥ 1:

Ci,j = i(j−1)(r+jλ+1) (−1)ikλ (α− β)j−1

×
〈
i+ j + k − 1

i

〉−1
V (λ+r,λ)

{
i− 1

j − 1

}
U(λ)

(j−1∏
t=1

Utλ

)

×

√√√√〈2j + k − 1

j

〉
V (λ+r,λ)

(2j+k−2∏
t=1

Vtλ+r

)−1{
j + k − 2

k − 1

}
U(λ)

.

2. Proofs

We will get relavent quantites related with the LU-decomposition by our usual guessing
strategy. As already mentioned, we will evaluate the relevant sums with the q-Zeilberger
algorithm, in particular the version that was developed at the RISC in Linz [5].

First, we show that
∑

j Lm,jUj,n is indeed the matrix T. We compute∑
j

Lm,jUj,n =
∑
j

iλk(j−m)q
λk(m−j)

2
(−qλ+r; qλ)2j+k−1(−qλ+r; qλ)m
(−qλ+r; q)j(−qλ+r; qλ)m+j+k−1

(qλ; qλ)m−1
(qλ; qλ)j−1(qλ; qλ)m−j

× (−1)j−1i−λk(j+n)−
λk2

2
+λk

2
−krq

λk(j+n)
2

+
λk(k−1)

4
−λj+λj2+r(j−1)+ rk

2

× (−qλ+r; qλ)n(−qλ+r; qλ)j+k−1
(−qλ+r; qλ)2j+k−2(−qλ+r; qλ)j+n+k−1

(qλ; qλ)j+k−2(q
λ; qλ)n−1

(qλ; qλ)n−j(qλ; qλ)k−1
.

We only keep terms that do contain the summation index j:∑
j

(−1)jq−λj+λj
2+rj (−qλ+r; qλ)2j+k−1

(−qλ+r; qλ)j(−qλ+r; qλ)m+j+k−1(qλ; qλ)j−1(qλ; qλ)m−j

× (−qλ+r; qλ)j+k−1
(−qλ+r; qλ)2j+k−2(−qλ+r; qλ)j+n+k−1

(qλ; qλ)j+k−2
(qλ; qλ)n−j

.
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We set qλ = Q and r = sλ and pull out an irrelevant factor:∑
j

(−1)jQ−j+j
2+sj (−Qs;Q)2j+k

(−Qs;Q)j+1(−Qs;Q)m+j+k

× (−Qs;Q)j+k
(−Qs;Q)2j+k−1(−Qs;Q)j+n+k

(Q;Q)j+k−2
(Q;Q)n−j(Q;Q)j−1(Q;Q)m−j

.

If we consider the sum as a function of m, computer algebra produces for m ≥ 2 the
recursion

SUMm =
1 +Qm+n+s−1

(1−Qm−1)(1 +Qm+s)(1 +Qk+m+n+s−1)
SUMm−1.

Since

SUM1 = −Qs (Q;Q)k−1
(−Qs;Q)2(−Qs;Q)1+n+k(Q;Q)n−1

,

we get a product representation for SUMm, and together with the irrelevant factors that
we dropped on the way, the terms from the matrix T.

Now we look at the inverse matrices:∑
n≤j≤m

Lm,jL
−1
j,n

=
∑

n≤j≤m

iλk(j−m)q
λk(m−j)

2
(−qλ+r; qλ)2j+k−1(−qλ+r; qλ)m
(−qλ+r; q)j(−qλ+r; qλ)m+j+k−1

(qλ; qλ)m−1
(qλ; qλ)j−1(qλ; qλ)m−j

× i−λk(j−n)(−1)j−nq
λ(j−n)(j−n+k−1)

2
(−qλ+r; qλ)j+n−2+k(−qλ+r; qλ)j
(−qλ+r; qλ)2j+k−2(−qλ+r; qr)n

(qλ; qλ)j−1
(qλ; qλ)n−1(qλ; qλ)j−n

.

Again, we drop all the terms that do not depend on j:∑
n≤j≤m

(−1)jqλ(
j
2)−λjn (−qλ+r; qλ)2j+k−1(−qλ+r; qλ)j+n+k−2

(−qλ+r; qλ)m+j+k−1(−qλ+r; qλ)2j+k−2
1

(qλ; qλ)m−j(qλ; qλ)j−n
.

After the substitutions,∑
n≤j≤m

(−1)jQ(j2)−jn (−Q;Q)2j+k+s−1(−Q;Q)j+n+k+s−2
(−Q;Q)m+j+k+s−1(−Q;Q)2j+k+s−2

1

(Q;Q)m−j(Q;Q)j−n
.

Computer algebra tells us that this is 0, for m 6= n, as required. The value 1 for m = n
can be computed by hand.

Now we consider the other inverse matrix:∑
m≤j≤n

Um,jU
−1
j,n

=
∑

m≤j≤n

(−1)m−1i−λk(m+j)−λk
2

2
+λk

2
−krq

λk(m+j)
2

+
λk(k−1)

4
−λm+λm2+r(m−1)+ rk

2

× (−qλ+r; qλ)j(−qλ+r; qλ)m+k−1

(−qλ+r; qλ)2m+k−2(−qλ+r; qλ)m+j+k−1

(qλ; qλ)m+k−2(q
λ; qλ)j−1

(qλ; qλ)j−m(qλ; qλ)k−1
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× iλk(j+n+r)+λ(
k
2)(−1)j−1q

−λ(n−j+k−1)(n+j)
2

−λjn−rn−λk(k−1)
4
− rk

2
+r

× (−qλ+r; qλ)2n+k−1(−qλ+r; qλ)n+j+k−2
(−qλ+r; qλ)j(−qλ+r; qλ)n+k−1

(qλ; qλ)k−1
(qλ; qλ)j−1(qλ; qλ)n−j(qλ; qλ)n+k−2

.

Again, we only keep factors that depend on j:∑
m≤j≤n

(−1)jqλ(
j+1
2 )−λjn (−qλ+r; qλ)n+j+k−2

(−qλ+r; qλ)m+j+k−1

1

(qλ; qλ)n−j(qλ; qλ)j−m
.

After substitutions,∑
m≤j≤n

(−1)jQ(j+1
2 )−jn (−Q;Q)n+j+k+s−2

(−Q;Q)m+j+k+s−1

1

(Q;Q)n−j(Q;Q)j−m
,

and computer algebra evaluates this again to 0 for m 6= 0.

Finally, for the Cholesky decomposition, we need to consider∑
1≤j≤min{i,l}

Ci,jCl,j =
∑

1≤j≤min{i,l}

q
λik
2

+
λj(j−1)

2
+
λk(k−1)

8
− r

2
+ rj

2
+ rk

4 i−
rk
2
−λk(k−1)

4
+λki+j−1

× (−qλ+r; qλ)i
(−qλ+r; qλ)i+j+k−1

(qλ; qλ)i−1
(qλ; qλ)i−j

× (1 + qr+λ(2j+k−1))(−qλ+r; qλ)j+k−1
(−qλ+r; qλ)j

(qλ; qλ)j+k−2
(qλ; qλ)k−1(qλ; qλ)j−1

× q
λlk
2

+
λj(j−1)

2
+
λk(k−1)

8
− r

2
+ rj

2
+ rk

4 i−
rk
2
−λk(k−1)

4
+λkl+j−1

× (−qλ+r; qλ)l
(−qλ+r; qλ)l+j+k−1

(qλ; qλ)l−1
(qλ; qλ)l−j

.

The terms that depend on j:∑
1≤j≤min{i,l}

(−1)jqλj(j−1)+rj

× (1 + qr+λ(2j+k−1))(−qλ+r; qλ)j+k−1
(−qλ+r; qλ)j(−qλ+r; qλ)i+j+k−1(−qλ+r; qλ)l+j+k−1

(qλ; qλ)j+k−2
(qλ; qλ)i−j(qλ; qλ)j−1(qλ; qλ)l−j

.

After the substitutions,∑
1≤j≤min{i,l}

(−1)jQj(j−1)+sj

× (1 +Qs+2j+k−1)(−Q;Q)j+k+s−1
(−Q;Q)j+s(−Q;Q)i+j+k+s−1(−Q;Q)l+j+k+s−1

(Q;Q)j+k−2
(Q;Q)i−j(Q;Q)j−1(Q;Q)l−j

.

Computer algebra produces the recursion (for i ≥ 2)

SUMi =
1 +Qi+l+s−1

(1−Qi−1)(1 +Qi+s)(1 +Qi+k+l+s−1)
SUMi−1.
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The initial value is easily found:

SUM1 = − Qs

(−Q;Q)1+s(−Q;Q)l+k+s

(Q;Q)k−1
(Q;Q)l−1

.

Iteration gives the product form for SUMi, and together with the dropped factors we get
the correct terms ti,l of the matrix T.
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