THE GENERALIZED LILBERT MATRIX
EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. We introduce a generalized Lilbert [Lucas-Hilbert] matrix. Explicit formulae
are derived for the LU-decomposition and their inverses, as well as the Cholesky decom-
position. The approach is to use g-analysis and to leave the justification of the necessary
identities to the g-version of Zeilberger’s celebrated algorithm.

1. INTRODUCTION

The Filbert matrix H,, = (Bij)?,jzl is defined by lvlij = F¢+1j71 as an analogue of the
Hilbert matrix where F), is the nth Fibonacci number. It has been defined and studied by
Richardson [7].

After the Filbert matrix, several generalizations and analogues of it have been investi-
gated and studied by Kili¢ and Prodinger. For the readers convenience, we briefly summa-

rize these generalizations:

e In [1], Kilig and Prodinger studied the generalized Filbert Matrix F with entries
oo where r > —1 is an integer parameter.
e After this generalization, Prodinger [6] defined a new generalization of the general-

ized Filbert matrix by introducing 3 additional parameters by taking its entries as
'yl
Exitiy+r’
e Recently, in [2], Kilig and Prodinger gave a further generalization of the generalized
Filbert Matrix J by defining the matrix Q with entries h;; as follows

1

?
FiyjirFivjorsn - Fijirie

hij -

where r > —1 is an integer parameter and k£ > 0 is an integer parameter.
e In a further paper [4], Kilig and Prodinger introduced a new kind of generalized
Filbert matrix § with entries g;; by

1

- F/\(i+j)+rF)\(i+j+l)+r ce F)\(i+j+k—1)+r

Gij

)

where » > —1 and A > 1 are integer parameters.
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e More recently, in [3], Kilig and Prodinger introduced four generalizations of the
Filbert matrix H,,, and defined the matrices P, K, £ and Y with entries
L 7 j+1
and y,;; = SNt

1 Fitpjrr
k= ————, ¢ 7
Aid-pj+s

Pij = 5 = , by =
Frivujir Fivujrs Lyigpjsr

respectively, where s, 7, A and p are integer parameters such that s # r, and r, s >
—land A\, u > 1.

In the works summarized above, the authors derived explicit formulse for the LU-
decomposition (For any square matrix A, a decomposition A = LU, where L is a unit
lower triangular matrix and U is an upper triangular matrix, is called LU-decomposition
of A) for the matrices mentioned above. Also they derived explicit formulee their inverses.

Let {U,} and {V,,} be generalized Fibonacci and Lucas sequences, respectively, whose
the Binet forms are

n __ AQn 1— "
Un = % =t and Y=ot =a” (L)
with ¢ = f/a = —a ™2, so that a = i/,/4.

When o = %5 (or equivalently ¢ = (1—+/5)/(1++/5)), the sequence {U,} is reduced
to the Fibonacci sequence {F,} and the sequence {V,,} is reduced to the Lucas sequence
{Ln} -

When a = 14++/2 (or equivalently ¢ = (1—v/2)/(14++v/2)), the sequence {U,} is reduced
to the Pell sequence {P,} and the sequence {V,,} is reduced to the Pell-Lucas sequence

{Qn}
In this paper, we define the Lilbert matrix T with entries ¢;; by

1

Liy+r Lagrjrnyr - - - Dagirjrb—1)4+r

tij =

Throughout this paper we will use the following notations: the ¢-Pochhammer symbol
(2;¢)n = (1 —2)(1—2q)...(1—2¢" ') and for z > 1, the Gaussian g-binomial coefficients

m _ (@5

kly  (@0)e(@% ¢¥)n—k

and for the case z = y, we will denote the Gaussian g-binomial coefficients as

m __ (@q)m

k. (@5 0)(a% ¢ )nr

We could also allow z > 1, but might have to take limits in some rare cases.
Furthermore, we will use generalized Fibonomial coefficients

{n} _ Ub(n71)+an(n72)+a e Ub(n,k)Jra
k Ul(a,b) U(IUb-f—aUQb—i—a oo Ub(k—1)+a

with {8} Ulad) = 1 where U, is the nth generalized Fibonacci number.
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For a = b, we denote the generalized Fibonomial coefficients as {Z} Ua)” Especially for
a = b =1, the generalized Fibonomial coefficients are denoted by {Z} g When U, = F,,,
the generalized Fibonomial reduces to the Fibonomial coefficients denoted by {Z} P
n F.Fy ... Fy i
{k}p T RB... B,
Similarly, when U,, = P,, the generalized Fibonomial reduces to the Pellnomial coefficients
denoted by {Z}P ;

n _Pnpnfl...Pnkarl
kf,  PP...B
The link between the generalized Fibonomial and Gaussian ¢g-binomial coefficients is

{Z} — ovk(n=k) [Z} with ¢ = —a>
(2:9) (2,9)

Furthermore, we will use generalized Lucanomial coefficients

<7’L> . %(n71)+a‘/b(n72)+a cee Vz)(nfk)#»a
V(a,b)

k Va%-{—a‘/Qb-i—a S %(k—l)-i—a
with <g> (ab) = 1 where V,, is the nth generalized Lucas number.
For a = b, we denote the generalized Lucanomial coefficients as <Z>V(a). Especially for

a = b = 1, the generalized Lucanomial coefficients are denoted by <Z>v When V,, = L,,
the generalized Lucanomial coefficients are reduced to the Lucanomial coefficients denoted

by ()
n _ LnLn—l Ce Ln—k—i—l
k/, Lily.. Ly

When V,, = Q,,, the generalized Lucanomial coefficients are reduced to the Pell-Lucanomial
coefficients denoted by <Z> 0’

<n> _ QnQn—l s Qn—k-H
k Q QlQQ cee Qk ‘

The link between the generalized Lucanomial and Gaussian ¢-binomial coefficients is

<n> = o¥k(n=h) {n] with ¢=—a 2
K/ v k] (—ew)

Considering the definitions of the matrix 7 and the g-Pochhammer symbol, we rewrite
the matrix T = [t;;] as

sk(A(i+7)+r)+

Ak(k—1)
t’Lj =1 2

B (i) ) — M =1) i)
q 5 (A(@+g)+r)— == (_q/\( +4)+ ;qx)k.

We call the matrix T, the generalized Lilbert matrix.

We will derive explicit formulee for the LU-decomposition for the matrix 7,,. We also
derive explicit formula for its inverse. Similarly to the results of [1, 2, 4, 6], the size of the
matrix does not really matter, and one can think about an infinite matrix 7 and restrict
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it whenever necessary to the first n rows resp. columns and write T,,. The entries of the
inverse matrix T, ! are not closed form expressions, as in our previous paper [1, 2], but can
only be given as a (simple) sum. We also provide the Cholesky decomposition. All the
identities we will obtain hold for general ¢, and results about Lucas and Fibonacci numbers
as well as Pell numbers etc., come out as corollaries for a special choice of q.

Firstly, we mention our general results depending on A and then give their specializaitons
for A = 1. After that, we give examples of these results for the Lucas and Pell-Lucas
numbers by taking special cases of q.

We will obtain the LU-decomposition T = L - U:

Theorem 1. For 1 <d <n we have

L, = ko M= Fd +k— 1} [n +d+k— 1} - [n - 1]
| ) n (~a+rs) L= 1

*iq*)
Its generalized Fibonacci-Lucas corollary:

Corollary 1. For1 <d <n,

. <2d+k:—1> <n+d+k—1>_1 {n—l}
n,d — .
d V(A+r\) n V(A7) d—1 U\

As a consequence of Theorem 1 for A = 1, we have

Corollary 2. For1 <d <n,

L= o {2d +r4+k— 1} [n +d+r4k-— 1} - [n - 1]

n,d — .
d+r (—4:9) ntr (~a0) L&~ L g0y

In the A =1 case, its generalized Fibonacci-Lucas corollary:

Corollary 3. For1 <d <mn,

L[tk =1 ndd k-] “n—1
md d+r v n+r v ld=1J,
From the corollaries above, we have the following examples: For » = 1 and ¢ =
(1 -5 ) / (1 +5 ) , we obtain a Fibonacci and Lucas consequence of Corollary 3:

Lo [2AR\ fntd+ R\ -1
TN d+1 /N n4+1 [/, ld=1,
For r =0 and ¢ = (1—\/5 ) / (1+\/§ ) , we obtain a Pell and Pell-Lucas consequence of

Corollary 3:
<2d+k:—1> <n+d+k—1>_1{n—1}
Ln,d: .
d 0 n 0 d—1],

Theorem 2. For1l <d <n we have

. CAR2 AR Ak(dEn) | Ak(k—1) 2 k
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y [d+n+k—1}l [d+k—2} [n—l] ()i
n (—>ria) k—1 (a450") d—1 (50*) (=M 07 2d 12

As a generalized Fibonacci-Lucas corollary of Theorem 2, we have

Corollary 4. For1 <d<n

_ d k—1
Ud,n _ (_1)(1+d)(1 A7) (a _ 5) (d—1) < +n+ >
n V(A4r,2)

d+k—2} {n—l} (2d+k 2 )—l(dl )2
X Virer Un | -
AT SR RO I1

As a consequence of Theorem 2 for A = 1, we have
Corollary 5. For 1 <d<n

o K2 |k k(d+n) | k(k—1) rk
Ugy = (—1)7 L Fdtn) =5+ 5—kr 75 +5 T —dd 4 (d-1)+

d—1 n+r

x FdJ“k_Q] {‘Hk’_ﬂ {”—1} (4 9)3-1
d—1 (—=%:49) k—1 (a:9) d—1 (3:9) (=@ @)2d11—2

And its generalized Fibonacci-Lucas corollary:

y {2d—|—r+k:—2]1 [d+n+r—|—k—1]l
(—¢;9) (—a;9)

Corollary 6. For 1 <d<n
U = (=1) @D (o — g)d-D
y <2d+r+k—2>‘1<d+n+r+k—1>‘1<2d+k—2>
d—1 v n-+r v d—1 v
dtk—2 n—1 2 2d+k—2  \ -1
LN e ()
From the Corollaries above, we give the following examples:

Forr=1and ¢ = (1 — \/5) / (1 + \/5), we obtain a Fibonacci and Lucas consequence of
Corollary 6:

-1 -1
Udn:(—l)d_15d*1 2d+k—1 d+n-+k 2d +k —2
’ d—1 L n+1 7 d—1 L

(L, ()
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For r =0 and ¢q = (1 — V2 ) / (1 +2 ), we obtain a Pell and Pell-Lucas consequence of

Corollary 6:
g1 /2d4+k—=2\""/d+n+k—1\"/2d+ k-2
Uin =2
d—1 0 n 0 d—1 0

dik—9 n—1 9 ,2d+k—2
A ) (T e)
We could also determine the inverses of the matrices L and U:

Theorem 3. For1l <d <n we have

L;}j — if)\k(nfd) (_ 1)n7dq

XFn—l—k—Q}l {n+d+k—2] {n—l}
n (- ig?) d (- ig?) d—1 (a%50*)

Its generalized Fibonacci-Lucas corollary:

A(n—d)(n—d+k—1)
2

Corollary 7. For 1 <d<n

LT_Ld_ )\(d2+d 1— n)( 1)n—d—)\nd

X<2n+k’—2>_1 <n+d—|—k—2> {n—l}
n V(Atr,)) d V(A7) d—1 U()\,)\)'

As a consequence of Theorem 3 for A = 1, we have
Corollary 8. for1 <d<n
L;’b _ if(k+2)(nfd)q7<nid>(n;d+kil)

X[n+d+r+k—2} [2n+r+kz—2]‘1 [n—l]
d+r (—a9) n+r (=4;9) (4;9)

Its generalized Fibonacci-Lucas corollary:
Corollary 9. For1 <d<n
L =i d(d+1)=n=1 (_ydnt1)=n
" <n+d+r+/€—2> <2n—|—r+k—2>1{n—1} .
d+r v n+r v ld=1]),

Thus we have the following example: for A\ =1, r = —2 and ¢ = (1 — \/3) / (1 + \/5) ,

. . . —1 .
Lt = #UHb=imt ()it <Z+]+k> <22+k> {2_1} .
i i+2 /. \Ni+2/, -1/,
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Theorem 4. For 1 <d <n we have

k —A(n—d+k—1)(n+d Ak(k—1 k
U(;ri — i)\k(d+n+r)+)\(2> (_1>d71q%7)\dnfrn77(4 )f%#»r

X[n+d+k—2} {n—l} {n+k—2}1
d—1 (- ig?) d—1 (aa) k—1 (a*5a*)

(=™ @) anth1 1
I+ (¢e)E

And its generalized Fibonacci-Lucas corollary:
Corollary 10. For1 <d<n

Ud‘ﬂ}b = (—1)T(17n)+(1+d)*dn)\ d-1+A-mntkr)A—kr (o 5)72(%1)

X<n+d+k‘—2> {n—l} {n+k5—2}_1
d—1 V(Ar,A) d—1 U(N) k—1 U(\

2n+k—1 n—1 ) 1
Viatr U, :
X ( H tA+ ) (t ] t)\) V)\d+T

t=1

For A = 1, as a consequence of Theorem 4, we have
Corollary 11. For1 <d<n
Udfi _ jk(dtn+r)+(5) (_1)d71q—’<"’d+k2’1)(”+d) —dn—rn—EEZD vk,
X{2n—|—r+k‘—1} [2n+k—2}1 {d+n+r+k’—2}
(—¢:9) (=¢:9) d+r (—g:9)

% {” - 1] [n +k— 2} - (=@ @) on+k—2
d—1 (@:9) k=1 (@:9) (@ 2)n

n n

And its generalized Fibonacci-Lucas corollary:

Corollary 12. For1 <d<n

Ud_ﬁll _ (_1)d—1—dn+r—nrid—n(n—1)—1 (Oé _ /8)72(7171)

y mar+k—1 m4k—2\""/d+ntr+k—2
n v n v d+r v

n— 1} {n+k— 2}1 <n1 )2 <2n+k’2 )
X Ut ‘/2 .
Lo s, (e) (I
Especiallyfor)\:rzlandq:(1—\/5)/(1+\/5),

Udji — (_ 1)d7dn7nidfn(n71)fl5lfn
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/RN /20 k=2 Tlden+k—1
n L n L d+1 L
n—1\ [n+k—2 e
(b, e (T )
- F F t=1

As a consequence, we can compute the determinant of T, since it is simply evaluated
as Ul,l cee Un,n .

Theorem 5.

det fJ‘ — l*%+f7kr+n(n+3)fk)\n(n+l)

A )2
An(ntD@ntd) | M=) g2k | L (4 1) (Ak—Atr) (@50 )a
(=54 2d4 k-2

xﬁ {2d+;‘—1}( . )[d;;iﬂ(qx;qk)'

d=1

X q

Its generalized Fibonacci and Lucas corollary

nn 1) 2d+k—2 -1 ,d-1 2
det T, = im0 (o — ( H VW) (H U”)
t=1
2d 4+ k —1\ " d+k—2
1 (G SIS s S
d=1 d V(A+r,A) k—1 U(N)

For q = (1—\/5)/(1+\/5), A =1and r =0, we easily see that

nn-1) 2d+k—2\"1/2d+k—1\""!
det T, =
= T ET0) (),

d=1

d—1 2 2d+k—2 1
2d+k—2 d+k—2
)T () (T e
- L F t=1
Now we compute the inverse of the matrix 7. This time it depends on the dimension,

so we compute (T;,) 1.

Theorem 6. For1 <i,j <n:

((Tn)_l)z . _ i)\(g)+)\k(l+7.)+)\k‘](_1)2_1_]q_ Ak(k*41+2]‘)_L21€+T_>‘(i<k*21)+1>+>\j(12+]‘)

1
(=g*750%); (=70 (=M750Y); (@5 a0)5 0 (@5 aY);

AT A o DY
w Z (_l)hq—;m(g‘wi)_rh( 54 )h+i+k—2( 7 9 )h+j+k—2
(0% )i (@50

X

max{%,j }<h<n
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(1 + q)\(h+k71)+r)

Finally, we provide the Cholesky decomposition.
Theorem 7. Fori,j > 1:

r Ak(k—1 e i Aj(Gj—1 Ak(k—1 r,Tj T
I R e
. . -1 .
i1+7+k—1 1 —1 Y
X i 1 (q » q )j—l
(*q””;qA) J (qA;q*)

. {2j+k—1} 1 lj+k‘—2]
j (coiri) (COY P22 L K =1 [y

Its generalized Fibonacci-Lucas Corollary:
Corollary 13. Fori,j > 1:
€y = 107D (1) (o — !

1

ik 1\ 1 -
L ()
t via+ry) WU~ Loy i

. 2j+k—2 1.
2 k—1 H k—2
J VOArA) N 2q - U\

2. PROOFS

We will get relavent quantites related with the LU-decomposition by our usual guessing
strategy. As already mentioned, we will evaluate the relevant sums with the g-Zeilberger
algorithm, in particular the version that was developed at the RISC in Linz [5].

First, we show that > i Lm,jUjn is indeed the matrix T. We compute

) A, A A7 A AL A
N akGem) 22mea) (=T )20k (=T ) m (€% ¢)m—1
E :Lm,JUJ,n_ E :1 g (—g
J J
2

" Q)i (= )k (@5 0) 105 ¢ ) mj

k(g Ak(k— . . .
qi“j"briﬂl N j+aj2+r(j—1)+ 2k

(™5 )= 01 (@50 jr—2(1 4N
(=75 @) 2412 (=71 jnn—1 (€50Y)n—j(0% @)k
We only keep terms that do contain the summation index j:

P 1e— ; _ARZ | AR
% (_1)] 11 Ak(j+n)—25—+57 —kr

Ar. A
Z(_l)jq—)\j+)\j2+rj . : . (_Q/\ 14 )2j+ki\1 . _
; (=™ @); (= @) mrjrr—1(a @) j-1(0; @) m—j
(=5 0N j4r (0% ¢")j4h—2

X

(_q/\+r;qA)2j+k_2(_qA+r;q>‘)j+n+k—1 (qA;qA)n—j '
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We set ¢* = @ and r = s\ and pull out an irrelevant factor:
_1yO—iti%+si (—@% Q)aj
2 G " Qe
% (—Q% Q)j+x (@ Q)jr—2
(—Q% Q)2jrk-1(—=Q% Q)jyntk (@3 Q)n—j(Q; Q)j-1(Q; Q)m—j

If we consider the sum as a function of m, computer algebra produces for m > 2 the
recursion

1 + Qm+n+s—1
SUM,, = (1—Qm )1+ Q)1+ Qk+m+n+sfl)SUMm_1'
Since
SUM1 _ _Qs (Q7Q)k—l

(—Q% Q)2(—Q% Q)14n14(Q; Q)1
we get a product representation for SUM,,, and together with the irrelevant factors that
we dropped on the way, the terms from the matrix 7.

Now we look at the inverse matrices:

> LinsL;)

n<j<m

S kG -m) 2t (=5 ) 2jk1 (=5 ) (% ¢ )m—1
= (=™ 0) (=™ @) majri—1 (€5 62)-1(¢5 ¢ ) m—;j

X i*Ak(jfn)(—1)jfnqx(j_n)7(j{n+k_” (=5 )2 (=M Y, (¢%5 9"
(=750 2jk—2(=*"10")n (@ ¢)n-1(a %) j-n
Again, we drop all the terms that do not depend on j:

Z (—1)jq/\(§)_/\jn (=M )21 (T ) k2 1 '
WS (=75 0N mtjar—1 (=75 02002 (05 ¢ m—j (05 1) jn

After the substitutions,

1) (;’)_jn (—Q;Q)2j+k+s—1(—Q;Q)j+n+k+s—2 1 .
n;m( ) @ (—Q; Q)m+j+k+s_1(—Q;Q)2j+k+s—2 (Q;Q)m—j(Q;Q)j—n

Computer algebra tells us that this is 0, for m # n, as required. The value 1 for m =n
can be computed by hand.

Now we consider the other inverse matrix:

-1
Z Um7]U],TL
m<j<n

2 . B
= E (_1)m—li_,\k(m+j)—%+%—quw+w_,\m+Am2+T(m_1)+%
m<j<n
Atr. oA A7 oA AL A AL A
(_q T7q )j(_q T,q )m-‘rk:—l (q ;4 )m+k—2(q i q )j—l

X
(=M @) omik—2 (= ) mjre-1 (@5 @) j—m (@ @) -1
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% ixk(j+n+r)+x(’;)(_1)j,1qwﬂjn,m,wf%ﬂ
(M a1 (= ) nggr2 (0% M)k
(=M@ (=T ) ner (@500)5-1(0 ¢ (0 ¢ ) ngr—2
Again, we only keep factors that depend on j:

X

S (U C i gis 1
e (=" ¢ mrjr—1 (050 n—3(0* ¢*) j-m
After substitutions,
T (C1pQU)n (% Dy 1
m<i<n (—Q; Q)m+j+k+s—1 (@; Q)n—j(@? Q)j—m7

and computer algebra evaluates this again to 0 for m # 0.

Finally, for the Cholesky decomposition, we need to consider
DTG E=TD SIS S S B A R & S S B UAC A
1<j<min{i,l} 1<j<min{i,l}
(=™ (hgM)i
(=™ @M ivjn—1 (@ 0)i-y
(1 + @ HEH=D) (A ) (@0 4k
(=75 ¢Y); (@5 @) r-1(a* ¢*)j1
I D sk MO
(M) (@hd)ia
(=75 @M igen—1 (@)
The terms that depend on j:
Z (_1)jq>\j(j—1)+rj
1<j<min{i,l}
(1 + qr+>\(2j+k—1))(_qz\+r; qA)j+k71 <q/\; q/\)j+k—2
(=M )i (= @i jrn—1 (=75 @)1 (@5 0)i—i (@ ¢) g1 (@ ¢ -y
After the substitutions,
S (@it
1<j<min{i,1}
(14 Q" 1)(—Q; Q) jhrs—1 (Q;Q)j+r-2
(—@; Q)j+s(—Q; Q)i+j+k+sfl(_Q§ Q)l+j+k+s—1 (@; Q)z’fj(Q; Q)jfl(QQ Q)H'

Computer algebra produces the recursion (for i > 2)

1+ Qi-‘rl-f—s—l
(1 _ szl)<1 + Qers)(l + Qi+k+l+871)

X

X

X
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The initial value is easily found:
Q° (Q; Q)r—1
(—Q; Q)14s(—=Q; Q)ryrrs (Q; Q)ia '

Iteration gives the product form for SUM;, and together with the dropped factors we get
the correct terms ¢;; of the matrix 7.

SUM; = —
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