THE GENERALIZED ¢-PILBERT MATRIX

EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. A generalized g-Pilbert matrix from [2] is further generalized,
introducing one additional parameter. Explicit formulee are derived for the
LU-decomposition and their inverses, as well as the Cholesky decomposi-
tion. The approach is to use g-analysis and to leave the justification of the
necessary identities to the g-version of Zeilberger’s celebrated algorithm.
However, the necessary identities have appeared already in [2] in disguised
form, so that no new computations are necessary.

1. INTRODUCTION

The Filbert matrix H,, = (fzij)ﬁj_l is defined by iLij = ﬁ as an analogue
INES itj—

of the Hilbert matrix where F;, is the nth Fibonacci number. It has been defined

and studied by Richardson [4].

In [1], Kilic and Prodinger studied the generalized matrix with entries =

Fitivr?
where r > —1 is an integer parameter. They gave its LU factorization and, JéiJrng
this, computed its determinant and inverse. Also the Cholesky factorization was
derived. After this generalization, Prodinger [3] defined a new generalization of
the generalized Filbert matrix by introducing 3 additional parameters. Again,
explicit formule for the LU-decomposition, their inverses, and the Cholesky
factorization were derived.

Recently, in [2], Kili¢ and Prodinger give a further generalization of the gen-
eralized Filbert Matrix & with entries Fi+1j+r’ where r > —1 is an integer pa-
rameter. They define the matrix Q with entries h;; as follows

1

FiyjrrFitjirtr - Figjarir—1’

where r > —1 is an integer parameter and k£ > 0 is an integer parameter.
When k = 1, we get the generalized Filbert Matrix F, as studied before. They

derive explicit formulee for the LU-decomposition and their inverses. Again,

explicit formulee for the LU-decomposition, their inverses, and the Cholesky

factorization were derived.

hij =
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In this paper, we introduce a new kind generalization of the Filbert matrix
and define the matrix § with enties g;; by

1

P+ Faqrie+r - Fa@irjrh—1)4+r

9ij

where » > —1 and A > 1 are integer parameters.

Here we note that the case A = 1 was given in [2] so that we shall study the
case A > 1 throughout this paper. However, all the old results are covered as
well, if in some cases the resulting formula is interpreted as a limit.

Our approach will be as follows. We will use the Binet form
with ¢ = B/a = —a~2, so that a = i/\/q.

Throughout this paper we will use the following notations: the ¢g-Pochhammer
symbol (z;¢), = (1 — 2)(1 — 2q)...(1 — 2z¢" 1) and as usual for z > 1, the
Gaussian g-binomial coefficients

m _ (4% 4")n
Kl  (@%5¢9)k(@%5 ¢ )n—k

and for the case z = y, we will denote the Gaussian g-binomial coefficients as
m _ (¢°:4%)n
ki, (¢%54%)k(a% %) n—k

Here we should note that when z = 1, (¢%;¢¥),, would be zero in some cases so

n
that [ } would be indefinite. In order to prevent such cases, we will consider
(z,9)

the Gaussian ¢-binomial coefficients for z > 1. Furthermore, for the matrix F
and its properties with z = 1, we can refer [2].

Considering the definitions of the matrix § and the g-Pochhammer symbol,
we rewrite the matrix § = [g;;] for A > 1 as

- A(i+5)+7r. A
W —%(X(i+j)+r—l)—’\k<i71) (q 54 )k

K (1—q)*

We call the matrix G,, the generalized q-Pilbert matriz. (When X\ = 1, we get
the generalized Filbert Matrix Q, as studied before.)

We will derive explicit formulae for the LU-decomposition and their inverses.
Similarly to the results of [1, 2], the size of the matrix does not really matter, and
it can be thought about an infinite matrix § and restrict it whenever necessary
to the first n rows resp. columns and write G,,. The entries of the inverse matrix
G, ! are not closed form expressions, as in our previous paper [1, 2], but can
only be given as a (simple) sum. We also provide the Cholesky decomposition.

gij = P +r—1)+
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All the identities we will obtain hold for general ¢, and results about Fibonacci
numbers come out as corollaries for the special choice of q.
Furthermore, we will use generalized Fibonomial coefficients

{n} - Fb(n71)+an(n72)+a oo Fb(nfk)+a
k

(a,b)  FuForaForia- - Fypim)+a

with {g}(a b = 1 where F,, is the nth Fibonacci number.

For a = b, we denote the generalized Fibonomial coefficents as {Z}a Espe-
cially for a = b = 1, the generalized Fibonomial coefficients are reduced to the
usual Fibonomial coefficients denoted by {Z} :

{n} _ FoFy1... Frb—k-‘rl

k BFy. . Fy

The link between the generalized Fibonomial and Gaussian g-binomial coef-

ficients is
{n} = qVk(n=k) {n} with ¢ = —a~ 2
kJ (o) k] )

We will obtain the LU-decomposition § = L - U, where L = (I;;) and U =
(uij) :
Theorem 1. For 1l <d <n we have

AldH+D)+7, A

_ i,\k(dfn)qu (@36 )n-1(q dtk—1
(@M a-1(a" ) n—a(@ TV M) g1

As a Fibonacci consequence of Theorem 1, we have

ln,d

Corollary 1. For1 <d<mn,

z _{n—l} {2d+k} {n+d+k}_1
T d =1, Ld+1 Sl n+l Sy

From the Corollary above, we have the following examples: For A = 2, r = —1,

;o n=1) fntdtk—2) [dd+2k-3

T \d =1, d+k—1 [, 2d-1
2d+k—2) ' (2n+2d+2k -3\ "
d—1 9 2n —1 ’

and, for A =2, r =0,

Lo n—1 n ntd+k—1)""
T =1 0\ df,l m—d [,
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Theorem 2. For 1l <d <n we have

Udyp =172

,n

-/\—"(l—k)—)\k(n-&-d)-i-k—kv-q)\[g (d+nf%+§)fd+d2]+%w+dr(1 —g)F

(00N ark—2(0% ¢ )1
(AR g g1 (PO N gk 1 (625 ¢ ) n—a(@; ¢ k1

Its Fibonacci Corollary:

X

Corollary 2. For1<d<n

-1
i = (_1)7«((171) {n+d+k} {d+k—2} {n—l}
n (r:)) d-1 J,ld-1),

d-1 2 2d+k—2 ~1
X (H Fu\) ( H Ft>\+r) Fntr.
t=1 t=0

From the Corollary above, we give the following examples: for A = 2, r = —1,
g1 (2n+2d+2k—3) " (n+d+k—2) (2d+k—2
Ud,n = (_1)
2n n—d 9 k—1 9

2d—1 2d+k—2 -1
X (H F2t>( 11 F2t1) B
t=1 t=1
and, for A =2, r =0,

2d+k—2)" (n-1) (n+d+k—1)"" kl:[lF |
Ug.p = .
< d—1 2 d—1 2 n+1 2 2 F2n+2

t=1

‘We could also determine the inverses of the matrices L and U:

Theorem 3. For 1 <d <n we have

A (d—n)(d—k—n+1) (@) 1 (DT M) o

{Ok+2)(d—n) .
(@0 a-1(a%; ¢ n—a(@ D+ ¢A ) o

—1
ln,d q

Its Fibonacci Corollary:

Corollary 3. For1<d<mn

l_l_i(d_n)(HdA_,LHQ){n1} {n+d+k1} {2n+k1}_1
n.d d—1/, d+1 eyl ntl Joy

Thus we have the following examples: for A =2, r = —1,

L ()t n+k—3) (2n—1) (4n+2k—5) "
md n—d [,l2d—1 2n — 2d ’
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and, for A =2, r =0,

171:(_1)d+n n—1 n+d+k—2 2n+k -2
m.d d—-1J, d 9 n 5

Theorem 4. For 1 <d <n we have

Ak(d+n) | kr k(k—1) k 2
-1 )Tz AT 54

ud,n -

n(n—1) k(d+n) &k d(d+1) E(k=1) | k
><q*AT+T*/\T*%*A"dﬂL)‘#*/\ﬁJFE*T"

A A
(PO ) (P ), s (€5 07)

X
(@5 M nsr—2(0 a1 ¢ n—a (1 —¢)F

And its Fibonacci corollary:

Corollary 4. For 1 <d<n
Intk—2 2n—2
i = oo pom-aanio (I, ) (T 6)
t=0 t=1

x{2n+k} {n+d+k1} {2n+k2}‘1
) d+1 (rA) n ()

k=2 n-1) (2n-2
k=1 f, ld=1f,\n=1/,
Especially for A =2, r = —1,

url = (L)t n+2d+2k—5) (2n+k—3) [2n+k—23)""
dm 2d — 2 n—d [, k-1 [,

2n+k—1 2n—2 —1 1
X Fo F: ,

and, for A =2, r =0,

k—1
_ d+k—2 n+k—-1 n
1 _pydin Jn Tt [ B2t ) Foa.
'Uad;n, ( ) d ) n ) d—1 S\t 2t 2d

As a consequence, we can compute the determinant of Q,, since it is simply
evaluated as uq,1 - - Up,n, (we only state the Fibonacci versions):
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Theorem 5.

det G, = (_1)5n-D - {2d+k}1 {d+k—2}
iU e U d=1 ]y

d—1 2 2d+k—2 -1
X (H Fm) ( H Fw\+r) Fair.
t=1 t=0

As examples, we have that for A\ =2 and r = —1,

1 b (4d 2k -3\ [2d+ k-2
det G, = (—1)7""*+3)
et 9n = (=1) dl;[l 2d k-1 f,

2d—1 2d+k—2 -1
X F: Fo —_,
() (I m) 7

and, for A\=2, r = -1

k—1 -1 n -1 -1
2d+k -2 2d+ k-1 1
s (ITe) T }
v=1

e 5 d+1 |, Foapa

Now we compute the inverse of the matrix §. This time it depends on the
dimension, so we compute (G,)"!.

Theorem 6. For1<i,j <n:

((5n) ™)

— (—1)U D=8 A = (5E i) = (1mimi=i?) 3+ (B3R i) B 4 £ (1)

y (70,
k
(1-9)" (g% ¢*)j-1(a*a*)i-1 (a0 41 (@750Y) 11
S (@750) prior @50 n41(075 0 hrrj—1(25 )1
maciiyenen @5 (@5 ) nr-2(0% M) n-i(0%5 ¢Nn-

% (1 _ q)\(2h+k71)+r) g~ haA—hr—ihA

Finally, we provide the Cholesky decomposition.
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Theorem 7. Fori,j > 1:

k
e . — (@50")i—1(1 —q)?
(P ) k1 (0 V)i

) . s o, I
% i—A%+A§+%+%—Aqu7J<72 Dok g aEl _\E_Byrd ke n

X \/(1 — P IHRDAT) (A ) j o (QUFDHT A )y

(@5 ¢ k=1(a*;¢*) -1

Its Fibonacci Corollary:

Corollary 5. Fori,j > 1:

. . —1 . itk—2 -
Ciy = iAIG-D (—1)* {z + Jj+ k} {z — 1} HH Fae,
7 i+l Jonl—11\ =o

j=1 j - i k=2
Jj+k 2} {] + k} ( )
<« (T F Favir ) Froish 1)
<tH1 M) \/{ k=1 JxU+1) tl;[o kT ) EAGTHR D

From the Corollary above, we give the following examples: for A = 2, r = —1,

_ i k—1)"" (i—1) [i=t
iy =i (-1)F {Z L g } {Z } (H Fu)
¢ a2 U =1 \é=1

-1
j+k—2 2j+k—-1 2 +k—1
(o (e
- 2 J (1,2) \ t=1
and, for A =2, r =0,

L it k—1) Y(i—1 Fororn k-1 -1
Cij = (—1)](3 Y {Z I + } {Z } \/2(2j+k D (H F2t> .
( o W —=1)5V FoiFogpn—1) \4i=1

2. PROOFS

We compute
Z lmdudn
d

_ Z iAk(d—m)qAM (M) m-1(g dtk—1
7 (0% 4M)a-1(*; M) m—a(@* ™D+ gM gy k1

AE(1—k)=2k(n+d)+k—kr A[g(d+n7%+g)fd+d2]+@fr+dr(1

A(d+1)+r, oA

k

X 1 -q)

q
(0 M) arr—2(0*1 ¢ )n—1
(gMAFR+T gN) g (DT N ) gk —1(0 0 ) n—al@; ¢ k-1

X
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From this, we only continue with terms that depend on the summation index d:

3 Ndr ) +dr (q";0")2a+k
(@ ¢ a-1(% ") m—-a(q"; ¢ ) mrare
(050 g2
(@750 2d+ k10475 ¢ ) nvark(@* ¢ ) n—d

We set Q :=¢* and s =r/\:

—d+d?+ds (Q% Q)2d+k
Zd: Q (Q, Q)d—l (Qa Q)m—d(Qs; Q)77L+d+k

y (Q; Q)atr—2
(Q%Q)2d+k-1(Q% Q)ntd+k(Q; Q)n—a
Apart from a constant factor, this is the sum that has been evaluated already
in [2], when (g, r) from [2] is replaced by (Q, s).
Now we look at the inverse matrices:

> lmalg,,

n<d<m
_ Z i/\k(dfm)q/\@ (¢ ) (DT N gy
n<d<m (%5 4*)a- ( ) m—a(@ DT M) g

(Q’\;q)‘) O i) P
(4 n-1(0*: ") a—n (D7 gN) gy o

N2 (=) 2 (n—d)(n—k—d+1)

= Mn=m) Z PO (@50 m-1 (I N gk
nadem (@ @) m—a (@M gM ) gy
(q)\(n+1)+r; q)\)d+k—2

“ (—1 nqu%(nfd)(nfkfdJrl) )
=1 (@0)n-1(0% ") a—n (@D ¢N ) gy -2

We only continue with terms that depend on the summation index d:
A(n+1)+r.

Z d+k—1(q 7QA)d+k—2

L (@) im0 g 1(02 0N a-n (@D ¢ g2

(_1)dq—)\nd+%d(d—1) (qA(d+1)+r; qA)

We replace Q := ¢*, s := r/\ and leave out irrelevant factors:

3 (—1)4Q ") (1 — Q=+ 2k =1)(Q% Q) gy p1
n<d<m (Qa Q)m—d(Q, Q)d—n(ng Q)m-i—d—i—k .

Apart from a constant factor, this is the sum that has been evaluated already
in [2], when (g,r) from [2] is replaced by (Q, s).
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—1
§ Um,dUq

m<d<n

_ ixg(1—k)—Ak(d+m)+k—quA[g(m+d—%+§)—m+m2]+@—r+mr(1 k

—q)
m<d<n

(Q’\; Q’\)m+k72(Q’\; Q’\)dq
(AR gA) 1 (@D M) e 1(05 0 a-m (625 ¢ k1

Ablddn) ke gy aEGED ko p2

X

x (=1)
% q—A%M—A%—%—AndH%—A%Jr%—m
A A
(T ), (DT ) (64507)
(@5 0N nrk—2(0*0M)a-1(¢*0Mn—a (1 — )"
Once again, we only write the terms that do depend on d:
d _ d(d+1)
>, (=D g M (¢ M) a (DT g ) ko
q 397 )m4+k—197347 )d—m \ 47397 )n+k—297547 )d—1\47; 4" )n—d

m<d<n( A(d+1)+r )\) ( A )\) ( A )\) ( A )\) ( A )\)

And again we do the usual replacement and ignore irrelevant factors:
d(d+1) s
3 (D Q" T (Q% Qusnsh
m<d<n (Q% Q)atm+k(Q; Q)a—m(Q; Q)n+k—2(Q; Q)n—d

And once again, this has been evaluated already in our previous paper.
Finally, for the Cholesky decomposition, we need to consider

Z ei,jel,ja

1<j<min{i,l}

or

3 (@5 0")i1(1—q)3 NUZD |k 2K yk ke
1< <min{i,i} (D00 g1 (0% 0V

A2k sk e g (L= @TRTUR) (X5 62) 402 (AUFDHT g
(@ aM)r-1(a5 0*)j—1
(q)\;q)\)l—l (17q)§q)\@+)\%+)\%,)\&,&+ﬂ+%,
(@4 0%) j k-1 (0 01—
2k bpae e [(1= @ BTFRUI (g3 02) 5400 (AUFDT g
(@5 aM)e-1(¢*50*) -1

We only let the terms survive that do depend on the summation index j:

X
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qu(j—l)-&-Tj

1<j<§i:n{i71} (A5 02) k-1 (0762

(1 — ?RIHR=D+) (X ) ;o (PAUTDFT )
(@:0*)j—1 (DT M) 1 (0

k—1
X

Rewriting it:

Z QIU=DTI(1 — Q¥FFH1)(Q: Q) j 4 k—2(Q%; Q) 4k _
(Q% Q)i j+r(Q;Q)i—;(Q% Q)j41(Q; Q)j—1(Q% Q)14 +1(Q; Q)i—;

And this is again the sum already studied in our previous paper.

1< <min{i 1}
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