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Abstract. A generalized q-Pilbert matrix from [2] is further generalized,

introducing one additional parameter. Explicit formulæ are derived for the

LU-decomposition and their inverses, as well as the Cholesky decomposi-
tion. The approach is to use q-analysis and to leave the justification of the

necessary identities to the q-version of Zeilberger’s celebrated algorithm.

However, the necessary identities have appeared already in [2] in disguised
form, so that no new computations are necessary.

1. Introduction

The Filbert matrix Hn =
(
ȟij
)n
i,j=1

is defined by ȟij = 1
Fi+j−1

as an analogue

of the Hilbert matrix where Fn is the nth Fibonacci number. It has been defined
and studied by Richardson [4].

In [1], Kılıç and Prodinger studied the generalized matrix with entries 1
Fi+j+r

,

where r ≥ −1 is an integer parameter. They gave its LU factorization and, using
this, computed its determinant and inverse. Also the Cholesky factorization was
derived. After this generalization, Prodinger [3] defined a new generalization of
the generalized Filbert matrix by introducing 3 additional parameters. Again,
explicit formulæ for the LU-decomposition, their inverses, and the Cholesky
factorization were derived.

Recently, in [2], Kılıç and Prodinger give a further generalization of the gen-
eralized Filbert Matrix F with entries 1

Fi+j+r
, where r ≥ −1 is an integer pa-

rameter. They define the matrix Q with entries hij as follows

hij =
1

Fi+j+rFi+j+r+1 . . . Fi+j+r+k−1
,

where r ≥ −1 is an integer parameter and k ≥ 0 is an integer parameter.
When k = 1, we get the generalized Filbert Matrix F, as studied before. They

derive explicit formulæ for the LU-decomposition and their inverses. Again,
explicit formulæ for the LU-decomposition, their inverses, and the Cholesky
factorization were derived.
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In this paper, we introduce a new kind generalization of the Filbert matrix F

and define the matrix G with enties gij by

gij =
1

Fλ(i+j)+rFλ(i+j+1)+r . . . Fλ(i+j+k−1)+r
,

where r > −1 and λ > 1 are integer parameters.
Here we note that the case λ = 1 was given in [2] so that we shall study the

case λ > 1 throughout this paper. However, all the old results are covered as
well, if in some cases the resulting formula is interpreted as a limit.

Our approach will be as follows. We will use the Binet form

Fn =
αn − βn

α− β
= αn−1 1− qn

1− q
,

with q = β/α = −α−2, so that α = i/
√
q.

Throughout this paper we will use the following notations: the q-Pochhammer
symbol (x; q)n = (1 − x)(1 − xq) . . . (1 − xqn−1) and as usual for z > 1, the
Gaussian q-binomial coefficients[

n

k

]
(z,y)

=
(qz; qy)n

(qz; qy)k(qz; qy)n−k

and for the case z = y, we will denote the Gaussian q-binomial coefficients as[
n

k

]
z

=
(qz; qz)n

(qz; qz)k(qz; qz)n−k
.

Here we should note that when z = 1, (qz; qy)n would be zero in some cases so

that

[
n

k

]
(z,y)

would be indefinite. In order to prevent such cases, we will consider

the Gaussian q-binomial coefficients for z > 1. Furthermore, for the matrix F

and its properties with z = 1, we can refer [2].
Considering the definitions of the matrix G and the q-Pochhammer symbol,

we rewrite the matrix G = [gij ] for λ ≥ 1 as

gij = ik(λ(i+j)+r−1)+
λk(k−1)

2 q−
k
2 (λ(i+j)+r−1)−λk(k−1)

4

(
qλ(i+j)+r; qλ

)
k

(1− q)k
.

We call the matrix Gn the generalized q-Pilbert matrix. (When λ = 1, we get
the generalized Filbert Matrix Q, as studied before.)

We will derive explicit formulæ for the LU-decomposition and their inverses.
Similarly to the results of [1, 2], the size of the matrix does not really matter, and
it can be thought about an infinite matrix G and restrict it whenever necessary
to the first n rows resp. columns and write Gn. The entries of the inverse matrix
G−1
n are not closed form expressions, as in our previous paper [1, 2], but can

only be given as a (simple) sum. We also provide the Cholesky decomposition.
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All the identities we will obtain hold for general q, and results about Fibonacci
numbers come out as corollaries for the special choice of q.

Furthermore, we will use generalized Fibonomial coefficients{
n

k

}
(a,b)

=
Fb(n−1)+aFb(n−2)+a . . . Fb(n−k)+a

FaFb+aF2b+a . . . Fb(k−1)+a

with
{
n
0

}
(a,b)

= 1 where Fn is the nth Fibonacci number.

For a = b, we denote the generalized Fibonomial coefficents as
{
n
k

}
a
. Espe-

cially for a = b = 1, the generalized Fibonomial coefficients are reduced to the
usual Fibonomial coefficients denoted by

{
n
k

}
:{

n

k

}
=
FnFn−1 . . . Fn−k+1

F1F2 . . . Fk
.

The link between the generalized Fibonomial and Gaussian q-binomial coef-
ficients is {

n

k

}
(z,y)

= αyk(n−k)

[
n

k

]
(z,y)

with q = −α−2.

We will obtain the LU-decomposition G = L · U , where L = (lij) and U =
(uij) :

Theorem 1. For 1 ≤ d ≤ n we have

ln,d = iλk(d−n)qλ
k(n−d)

2
(qλ; qλ)n−1(qλ(d+1)+r; qλ)d+k−1

(qλ; qλ)d−1(qλ; qλ)n−d(qλ(n+1)+r; qλ)d+k−1
.

As a Fibonacci consequence of Theorem 1, we have

Corollary 1. For 1 ≤ d ≤ n,

ln,d =

{
n− 1

d− 1

}
λ

{
2d+ k

d+ 1

}
(r,λ)

{
n+ d+ k

n+ 1

}−1

(r,λ)

.

From the Corollary above, we have the following examples: For λ = 2, r = −1,

ln,d =

{
n− 1

d− 1

}
2

{
n+ d+ k − 2

d+ k − 1

}
2

{
4d+ 2k − 3

2d− 1

}
×
{

2d+ k − 2

d− 1

}−1

2

{
2n+ 2d+ 2k − 3

2n− 1

}−1

,

and, for λ = 2, r = 0,

ln,d =

{
n− 1

d− 1

}
2

{
n

d

}
2

{
n+ d+ k − 1

n− d

}−1

2

.



4 EMRAH KILIÇ AND HELMUT PRODINGER

Theorem 2. For 1 ≤ d ≤ n we have

ud,n = iλ
k
2 (1−k)−λk(n+d)+k−krqλ[ k2 (d+n− 1

2 + k
2 )−d+d2]+

k(r−1)
2 −r+dr(1− q)k

× (qλ; qλ)d+k−2(qλ; qλ)n−1

(qλ(d+k)+r; qλ)d−1(qλ(n+1)+r; qλ)d+k−1(qλ; qλ)n−d(qλ; qλ)k−1
.

Its Fibonacci Corollary:

Corollary 2. For 1 ≤ d ≤ n

ud,n = (−1)
r(d−1)

{
n+ d+ k

n

}−1

(r;λ)

{
d+ k − 2

d− 1

}
λ

{
n− 1

d− 1

}
λ

×
(d−1∏
t=1

Ftλ

)2(2d+k−2∏
t=0

Ftλ+r

)−1

Fλn+r.

From the Corollary above, we give the following examples: for λ = 2, r = −1,

ud,n = (−1)
d−1

{
2n+ 2d+ 2k − 3

2n

}−1{
n+ d+ k − 2

n− d

}
2

{
2d+ k − 2

k − 1

}
2

×
(2d−1∏
t=1

F2t

)(2d+k−2∏
t=1

F2t−1

)−1
1

F2n
,

and, for λ = 2, r = 0,

ud,n =

{
2d+ k − 2

d− 1

}−1

2

{
n− 1

d− 1

}
2

{
n+ d+ k − 1

n+ 1

}−1

2

(k−1∏
t=1

F2t

)−1
1

F2n+2
.

We could also determine the inverses of the matrices L and U :

Theorem 3. For 1 ≤ d ≤ n we have

l−1
n,d = i(λk+2)(d−n)q

λ
2 (d−n)(d−k−n+1) (qλ; qλ)n−1(qλ(d+1)+r; qλ)n+k−2

(qλ; qλ)d−1(qλ; qλ)n−d(qλ(n+1)+r; qλ)n+k−2
.

Its Fibonacci Corollary:

Corollary 3. For 1 ≤ d ≤ n

l−1
n,d = i(d−n)(λ+dλ−nλ+2)

{
n− 1

d− 1

}
λ

{
n+ d+ k − 1

d+ 1

}
(r;λ)

{
2n+ k − 1

n+ 1

}−1

(r;λ)

.

Thus we have the following examples: for λ = 2, r = −1,

l−1
n,d = (−1)

d+n

{
2n+ k − 3

n− d

}
2

{
2n− 1

2d− 1

}{
4n+ 2k − 5

2n− 2d

}−1

,
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and, for λ = 2, r = 0,

l−1
n,d = (−1)

d+n

{
n− 1

d− 1

}
2

{
n+ d+ k − 2

d

}
2

{
2n+ k − 2

n

}
2

.

Theorem 4. For 1 ≤ d ≤ n we have

u−1
d,n = (−1)

λk(d+n)
2 + kr

2 −d+λ
k(k−1)

4 − k2 +n2

× q−λ
n(n−1)

2 +r−λ k(d+n)
2 − kr2 −λnd+λ

d(d+1)
2 −λ k(k−1)

4 + k
2−rn

× (qλ(n+k)+r; qλ)n(qλ(d+1)+r; qλ)n+k−2

(qλ; qλ)n+k−2(qλ; qλ)d−1(qλ; qλ)n−d

(
qλ; qλ

)
k−1

(1− q)k
.

And its Fibonacci corollary:

Corollary 4. For 1 ≤ d ≤ n

u−1
d,n = (−1)

n−d+r(1−n)
inλ(1−n)−dλ(2n−1−d)

(2n+k−2∏
t=0

Ftλ+r

)(2n−2∏
t=1

Ftλ

)

×
{

2n+ k

n

}
(r,λ)

{
n+ d+ k − 1

d+ 1

}
(r,λ)

{
2n+ k − 2

n

}−1

(r,λ)

×
{
n+ k − 2

k − 1

}−1

λ

{
n− 1

d− 1

}
λ

{
2n− 2

n− 1

}
λ

.

Especially for λ = 2, r = −1,

u−1
d,n = (−1)

d+1

{
2n+ 2d+ 2k − 5

2d− 2

}{
2n+ k − 3

n− d

}
2

{
2n+ k − 3

k − 1

}−1

2

×
(2n+k−1∏

t=1

F2t−1

)(2n−2∏
t=1

F2t

)−1
1

F2d−1
,

and, for λ = 2, r = 0,

u−1
d,n = (−1)

d+n

{
n+ d+ k − 2

d

}
2

{
2n+ k − 1

n

}
2

{
n

d− 1

}
2

(k−1∏
t=1

F2t

)
F2d.

As a consequence, we can compute the determinant of Qn, since it is simply
evaluated as u1,1 · · ·un,n (we only state the Fibonacci versions):
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Theorem 5.

detGn = (−1)
r
2n(n−1)

n∏
d=1

{
2d+ k

d

}−1

(r,λ)

{
d+ k − 2

d− 1

}
λ

×
(d−1∏
t=1

Ftλ

)2(2d+k−2∏
t=0

Ftλ+r

)−1

Fλd+r.

As examples, we have that for λ = 2 and r = −1,

detGn = (−1)
1
2n(n+3)

n∏
d=1

{
4d+ 2k − 3

2d

}−1{
2d+ k − 2

k − 1

}
2

×
(2d−1∏
t=1

F2t

)(2d+k−2∏
t=1

F2t−1

)−1
1

F2d
,

and, for λ = 2, r = −1

detGn =

(k−1∏
v=1

F2v

)−1 n∏
d=1

{
2d+ k − 2

d− 1

}−1

2

{
2d+ k − 1

d+ 1

}−1

2

1

F2d+2
.

Now we compute the inverse of the matrix G. This time it depends on the
dimension, so we compute (Gn)−1.

Theorem 6. For 1 ≤ i, j ≤ n:

(
(Gn)−1

)
i,k

= (−1)
(j−i)− k2 (1−r)−( 1−k

2 −i−j)
kλ
2 qr−(1−i−j−j2)λ2 +( 1−k

2 −i−j)
kλ
2 + k

2 (1−r)

×
(
qλ; qλ

)
k−1

(1− q)k (qλ; qλ)j−1(qλ; qλ)i−1 (qr; qλ)i+1 (qr; qλ)j+1

×
∑

max{i,j}≤h≤n

(
qr; qλ

)
h+k+i−1

(qr; qλ)h+1(qr; qλ)h+k+j−1(qλ; qλ)h−1

(qr; qλ)h+k (qλ; qλ)h+k−2(qλ; qλ)h−i(qλ; qλ)h−j

×
(

1− qλ(2h+k−1)+r
)
q−hjλ−hr−ihλ.

Finally, we provide the Cholesky decomposition.
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Theorem 7. For i, j ≥ 1:

Ci,j =
(qλ; qλ)i−1(1− q) k2

(qλ(i+1)+r; qλ)j+k−1(qλ; qλ)i−j

× i−λ
k2

4 +λ k4 + k
2 + 3rk

2 −λikqλ
j(j−1)

2 +λ ki2 +λ k
2

8 −λ
k
8−

k
4 + rj

2 + kr
4 −

r
2

×

√
(1− qλ(2j+k−1)+r)(qλ; qλ)j+k−2(qλ(j+1)+r; qλ)k−1

(qλ; qλ)k−1(qλ; qλ)j−1
.

Its Fibonacci Corollary:

Corollary 5. For i, j ≥ 1:

Ci,j = i(jλ+r)(j−1) (−1)
kr

{
i+ j + k

i+ 1

}−1

(r,λ)

{
i− 1

j − 1

}
λ

(
j+k−2∏
t=0

Fλt+r

)−1

×
(
j−1∏
t=1

Fλt

)√{
j + k − 2

k − 1

}
λ

{
j + k

j + 1

}
(r,λ)

(
k−2∏
t=0

Fλt+r

)
Fλ(2j+k−1)+r.

From the Corollary above, we give the following examples: for λ = 2, r = −1,

Ci,j = i1−j (−1)
k

{
i+ j + k − 1

i

}−1

(1,2)

{
i− 1

j − 1

}
2

(
j−1∏
t=1

F2t

)

×

√√√√{j + k − 2

k − 1

}
2

{
2j + k − 1

j

}
(1,2)

(
2j+k−1∏
t=1

F2t−1

)−1

and, for λ = 2, r = 0,

Ci,j = (−1)
j(j−1)

{
i+ j + k − 1

i

}−1

2

{
i− 1

j − 1

}
2

√
F2(2j+k−1)

F2jF2(j+k−1)

(
k−1∏
t=1

F2t

)−1

.

2. Proofs

We compute∑
d

lmdudn

=
∑
d

iλk(d−m)qλ
k(m−d)

2
(qλ; qλ)m−1(qλ(d+1)+r; qλ)d+k−1

(qλ; qλ)d−1(qλ; qλ)m−d(qλ(m+1)+r; qλ)d+k−1

× iλ
k
2 (1−k)−λk(n+d)+k−krqλ[ k2 (d+n− 1

2 + k
2 )−d+d2]+

k(r−1)
2 −r+dr(1− q)k

× (qλ; qλ)d+k−2(qλ; qλ)n−1

(qλ(d+k)+r; qλ)d−1(qλ(n+1)+r; qλ)d+k−1(qλ; qλ)n−d(qλ; qλ)k−1
.
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From this, we only continue with terms that depend on the summation index d:∑
d

qλ(−d+d2)+dr (qr; qλ)2d+k

(qλ; qλ)d−1(qλ; qλ)m−d(qr; qλ)m+d+k

× (qλ; qλ)d+k−2

(qr; qλ)2d+k−1(qr; qλ)n+d+k(qλ; qλ)n−d
.

We set Q := qλ and s = r/λ:∑
d

Q−d+d2+ds (Qs;Q)2d+k

(Q;Q)d−1(Q;Q)m−d(Qs;Q)m+d+k

× (Q;Q)d+k−2

(Qs;Q)2d+k−1(Qs;Q)n+d+k(Q;Q)n−d
.

Apart from a constant factor, this is the sum that has been evaluated already
in [2], when (q, r) from [2] is replaced by (Q, s).

Now we look at the inverse matrices:∑
n≤d≤m

lm,dl
−1
d,n

=
∑

n≤d≤m

iλk(d−m)qλ
k(m−d)

2
(qλ; qλ)m−1(qλ(d+1)+r; qλ)d+k−1

(qλ; qλ)d−1(qλ; qλ)m−d(qλ(m+1)+r; qλ)d+k−1

× i(λk+2)(n−d)q
λ
2 (n−d)(n−k−d+1) (qλ; qλ)d−1(qλ(n+1)+r; qλ)d+k−2

(qλ; qλ)n−1(qλ; qλ)d−n(qλ(d+1)+r; qλ)d+k−2

= iλk(n−m)
∑

n≤d≤m

qλ
k(m−d)

2
(qλ; qλ)m−1(qλ(d+1)+r; qλ)d+k−1

(qλ; qλ)m−d(qλ(m+1)+r; qλ)d+k−1

× (−1)n−dq
λ
2 (n−d)(n−k−d+1) (qλ(n+1)+r; qλ)d+k−2

(qλ; qλ)n−1(qλ; qλ)d−n(qλ(d+1)+r; qλ)d+k−2
.

We only continue with terms that depend on the summation index d:∑
n≤d≤m

(−1)dq−λnd+λ
2 d(d−1)(qλ(d+1)+r; qλ)d+k−1(qλ(n+1)+r; qλ)d+k−2

(qλ; qλ)m−d(qλ(m+1)+r; qλ)d+k−1(qλ; qλ)d−n(qλ(d+1)+r; qλ)d+k−2
.

We replace Q := qλ, s := r/λ and leave out irrelevant factors:∑
n≤d≤m

(−1)dQ−nd+(d2)(1−Qs+2d+k−1)(Qs;Q)n+d+k−1

(Q;Q)m−d(Q;Q)d−n(Qs;Q)m+d+k
.

Apart from a constant factor, this is the sum that has been evaluated already
in [2], when (q, r) from [2] is replaced by (Q, s).
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∑
m≤d≤n

um,du
−1
d,n

=
∑

m≤d≤n

iλ
k
2 (1−k)−λk(d+m)+k−krqλ[ k2 (m+d− 1

2 + k
2 )−m+m2]+

k(r−1)
2 −r+mr(1− q)k

× (qλ; qλ)m+k−2(qλ; qλ)d−1

(qλ(m+k)+r; qλ)m−1(qλ(d+1)+r; qλ)m+k−1(qλ; qλ)d−m(qλ; qλ)k−1

× (−1)
λk(d+n)

2 + kr
2 −d+λ

k(k−1)
4 − k2 +n2

× q−λ
n(n−1)

2 +r−λ k(d+n)
2 − kr2 −λnd+λ

d(d+1)
2 −λ k(k−1)

4 + k
2−rn

× (qλ(n+k)+r; qλ)n(qλ(d+1)+r; qλ)n+k−2

(qλ; qλ)n+k−2(qλ; qλ)d−1(qλ; qλ)n−d

(
qλ; qλ

)
k−1

(1− q)k
.

Once again, we only write the terms that do depend on d:∑
m≤d≤n

(−1)
d
q−λnd+λ

d(d+1)
2 (qλ; qλ)d−1

(qλ(d+1)+r; qλ)m+k−1(qλ; qλ)d−m

(qλ(d+1)+r; qλ)n+k−2

(qλ; qλ)n+k−2(qλ; qλ)d−1(qλ; qλ)n−d
.

And again we do the usual replacement and ignore irrelevant factors:∑
m≤d≤n

(−1)
d
Q−nd+

d(d+1)
2 (Qs;Q)d+n+k−1

(Qs;Q)d+m+k(Q;Q)d−m(Q;Q)n+k−2(Q;Q)n−d
.

And once again, this has been evaluated already in our previous paper.
Finally, for the Cholesky decomposition, we need to consider∑

1≤j≤min{i,l}

Ci,jCl,j ,

or ∑
1≤j≤min{i,l}

(qλ; qλ)i−1(1− q) k2
(qλ(i+1)+r; qλ)j+k−1(qλ; qλ)i−j

qλ
j(j−1)

2 +λ ki2 +λ k
2

8 −λ
k
8−

k
4 + rj

2 + kr
4 −

r
2

× i−λ
k2

4 +λ k4 + k
2 + 3rk

2 −λik

√
(1− qλ(2j+k−1)+r)(qλ; qλ)j+k−2(qλ(j+1)+r; qλ)k−1

(qλ; qλ)k−1(qλ; qλ)j−1

× (qλ; qλ)l−1

(qλ(l+1)+r; qλ)j+k−1(qλ; qλ)l−j
(1− q) k2 qλ

j(j−1)
2 +λ kl2 +λ k

2

8 −λ
k
8−

k
4 + rj

2 + kr
4 −

r
2

× i−λ
k2

4 +λ k4 + k
2 + 3rk

2 −λlk

√
(1− qλ(2j+k−1)+r)(qλ; qλ)j+k−2(qλ(j+1)+r; qλ)k−1

(qλ; qλ)k−1(qλ; qλ)j−1

We only let the terms survive that do depend on the summation index j:
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∑
1≤j≤min{i,l}

qλj(j−1)+rj

(qλ(i+1)+r; qλ)j+k−1(qλ; qλ)i−j

× (1− qλ(2j+k−1)+r)(qλ; qλ)j+k−2(qλ(j+1)+r; qλ)k−1

(qλ; qλ)j−1(qλ(l+1)+r; qλ)j+k−1(qλ; qλ)l−j
.

Rewriting it:∑
1≤j≤min{i,l}

Qj(j−1)+sj(1−Q2j+k+s−1)(Q;Q)j+k−2(Qs;Q)j+k
(Qs;Q)i+j+k(Q;Q)i−j(Qs;Q)j+1(Q;Q)j−1(Qs;Q)l+j+k(Q;Q)l−j

.

And this is again the sum already studied in our previous paper.
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