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Abstract

In this paper, we obtain solutions to in�nite family of Pell equations of
higher degree based on the more generalized Fibonacci and Lucas sequences
as well as their all subsequences of the form {ukn} and {vkn} for odd k > 0.
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1. Introduction

The generalized Fibonacci and Lucas sequences are de�ned by

un+1 = Aun +Bun−1 (1.1)

and
vn+1 = Avn +Bvn−1, (1.2)

∗Corresponding author
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where u0 = 0, u1 = 1 and v0 = 2, v1 = A, respectively.
For k ≥ 0 and n > 1, the sequences {ukn} and {vkn} satisfy the recursions (see

[1]):

ukn = vkuk(n−1) − (−B)kuk(n−2) and vkn = vkvk(n−1) − (−B)kvk(n−2). (1.3)

The Binet formulae are

un =
αn − βn

α− β
and vn = αn + βn,

where α, β = A±
√
A2 + 4B.

By the Binet formulae note that for a �xed k > 0,

u−kn = (−1)kn+1ukn and u2kn = vknukn. (1.4)

A n× n quasi-cyclic matrix R (D;x1, x2, ...xn) (or shortly R) has the form (see
[2, 4, 5]):

R =


x1 Dxn Dxn−1 ... Dx3 Dx2

x2 x1 Dxn ... Dx4 Dx3

... ... ... ... ... ...

... ... ... ... ... ...
xn−1 xn−2 xn−3 ... x1 Dxn

xn xn−1 xn−2 ... x2 x1

 .

The classical Pell equation x2 − dy2 = ±1 (d ∈ Z) can be rewritten as

det

(
x dy
y x

)
= ±1.

By means of quasi-cyclic determinants, the equation

det


x1 Dxn Dxn−1 ... Dx3 Dx2

x2 x1 Dxn ... Dx4 Dx3

... ... ... ... ... ...

... ... ... ... ... ...
xn−1 xn−2 xn−3 ... x1 Dxn

xn xn−1 xn−2 ... x2 x1

 = ±1

is called Pell's equation of degree n.
In [2], the author gave a method to generalize the classical Pell equation whose

degree is n = 2 to a Pell equation of degree n ≥ 2 by some n × n quasi-cyclic
determinants. In particular, the author proved that for n ≥ 2,

det (R (Ln;F2n−1, F2n−2, ..., Fn)) = 1, (1.5)

where Ln and Fn denote the nth Lucas and Fibonacci number, respectively. Further
it was showed that

det (R (Ln;F2n−1+k, F2n−2+k, ..., Fn+k)) = (−1)
n−1

LnF
n
k + Fn

k−1,
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where k is an integer.
In [3], the author generalized the results given in [2] by giving a relationship

between certain Pell equations of degree n and general Fibonacci and Lucas se-
quences. For example, for k = 1 in (1.3) and (1.4) and n > 1, we have

det (R (vn;u2n−1, u2n−2, ..., un)) = Bn(n−1), (1.6)

where B is de�ned as before.
From [4, 5], the following two propositions are known:

Proposition 1. For n > 0,

det (R) =
n−1∏
k=0

(
n∑

i=1

xid
i−1εk(i−1)

)
, (1.7)

where d = n
√
D, ε = e2πi/n and each factor

∑n
i=1 xid

i−1εk(i−1) of the RHS of (1.7)
is an eigenvalue of the matrix R.

Proposition 2. Let n and D be �xed. Then the sum, di�erences, and product of
two quasi-cyclic matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix
is quasi-cyclic.

In this paper, we generalize the results of [2, 3] and so obtain solutions to in�nite
family of Pell equations of higher degree based on more generalized Fibonacci and
Lucas sequences as well as their all subsequences of the form {ukn} and {vkn} ,
for odd k > 0.

2. Quasi-cyclic matrices via the generalized

Fibonacci and Lucas numbers

We obtain some results about in�nite family of Pell equations of higher degree by
using certain quasi-cyclic determinants with the generalized Fibonacci and Lucas
numbers. We give some auxiliary results for further use and denote (−B)

k
by b for

easy writing.

Lemma 2.1. For positive integers k and n,

vkuk(2n−1) − vknukn = buk(2n−2),

b
(
uk(2n−1) − vknuk(n−1)

)
= bnuk,

u2
kn − uk(n+1)uk(n−1) = b(n−1)u2

k.

Proof. The claimed identities follows from the Binet formulae.

Theorem 2.2. For n ≥ 2,

det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
= bn(n−1)un

k . (2.1)
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Proof. For n = 2,

det (R (v2k;u3k, u2k)) =

∣∣∣∣ u3k v2ku2k

u2k u3k

∣∣∣∣ = u2
3k − v2ku

2
2k = b2u2

k.

For n > 2, consider the upper triangular matrix

T =



1 −vk b 0

1 −vk
. . .

. . .
. . . b
1 −vk

1

 . (2.2)

From a matrix multiplication and by Lemma 2.1, we get

RT =



uk(2n−1) −buk(2n−2) bnuk 0 . . . 0

uk(2n−2) −buk(2n−3) 0 bnuk
. . .

...
...

...
... 0

. . . 0
...

...
...

...
. . . bnuk

uk(n+1) −bukn 0 0 . . . 0
ukn −buk(n−1) 0 0 . . . 0


(2.3)

Then we write

detR = (detR) (detT ) = det (RT )

=
(
bu2

kn − buk(n+1)uk(n−1)

)
det


bnuk 0 · · · 0

0 bnuk
. . .

...
...

. . .
. . . 0

0 · · · 0 bnuk


=

(
bu2

kn − buk(n+1)uk(n−1)

)
(bnuk)

n−2

= bn(n−1)un
k ,

as claimed.

Corollary 2.3. For n ≥ 2,

n−1∏
k=0

 n∑
j=1

uk(2n−j) ( n
√
vkn)

j−1
εk(j−1)

 = bn(n−1)un
k ,

where n
√
vkn is the nth complex root of vkn and ε = e2πi/n.

We shall need the following identities:
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1. −buk(2n−3) + vkuk(2n−2) − uk(2n−1) = 0, ...,−bukn + vkuk(n+1) − uk(n+2) = 0,

2. uk(2n−1) − vknuk(n−1) = bn−1uk,

3. En+1
n = vknEn and En

n = vknIn, where

En =


0 0 · · · 0 vkn
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0

 .

Theorem 2.4. For n ≥ 3, the matrix R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
is invert-

ible and its inverse matrix R−1 is given by

R−1
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
= − 1

ukbn
(
−bIn + vkEn − E2

n

)
, (2.4)

where In is the n× n identity matrix and the matrix En is de�ned as before.

Proof. Since det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
̸= 0 by Theorem 2.2, its in-

verse exists. It is easy to see that

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
=
(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)
.

Hence,

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
R−1

(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
=

(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)( −1

ukbn

)(
− (−B)

k
In + vkEn − E2

n

)
= (−buk(2n−1)In + (u2kn − uknvkn)En +

(
vkukn − uk(n+1)

)
vknIn)

(
−1

ukbn

)
= −b

(
uk(2n−1) − vknuk(n−1)

)
In

(
−1

ukbn

)
= −b

(
b(n−1)uk

)
In

(
−1

ukbn

)
= In,

as claimed.

3. The Determinants of Quasi-Cyclic Matrices

For all integer t, de�ne the n× n quasi-cyclic matrix Rk,n,t as

Rk,n,t = R
(
vkn;uk(2n−1+t), uk(2n−2+t), ..., uk(n+t)

)
.
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By Theorem 2.2, we have

det (Rk,n,0) = bn(n−1)un
k .

For detRk,n,1, detRk,n,2,..., detRk,n,−1, detRk,n,−2,..., we can obtain correspond-
ing results.

De�ne the n× n matrices gk,n,t and hk,n,t as shown:

gk,n,t =



uk(2n+t−1) −buk(2n+t−2) −bn+1uk(t−1) 0

uk(2n+t−2) −buk(2n+t−3) bnukt
. . .

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) −buk(n+t)

...
. . . bnukt

uk(n+t) −buk(n+t−1) 0 . . . 0


and

hk,n,t =



uk(2n+t−1) bnukt −bn+1uk(t−1) 0
uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

...
... 0 bnukt

. . .
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0 0 . . .
. . . bnukt

uk(n+t) 0 0 . . . . . . 0


.

We give some auxiliary Lemmas before the proof of main Theorem.

Lemma 3.1. (The recurrence of det gk,n,t)

det gk,n,t = (−1)
n
b(n

2−n+t)ukuk(n−1)u
n−2
kt − b(2n−1)uk(t−1) det gk,n−1,t. (3.1)

Proof. Clearly

det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) uk(2n+t−2) −buk(t−1) 0 ... 0

uk(2n+t−2) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t+1) uk(n+t)

...
...

. . . ukt

uk(n+t) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By subtracting the second column of gk,n,t from the �rst column by multiplying
vk gives us

6



det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

buk(2n+t−3) uk(2n+t−2) −buk(t−1) 0 ... 0

buk(2n+t−4) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t−1) uk(n+t)

...
...

. . . ukt

buk(n+t−2) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

So on after n+ t− 1 subtractions between the two columns, we get �nally

det gk,n,t

= −bn(n−2)+n+t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ukn uk(n−1) −buk(t−1) 0 ... 0

uk(n−1) uk(n−2) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

u2k u1

...
...

. . . ukt

uk u0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant above with respect to the �rst row and by u0 = 0,
we get

det gk,n,t = b(n
2−n+t)uk(n−1)

∣∣∣∣∣∣∣∣∣∣∣
uk(n−1) ukt ...

...
... 0 ... −buk(t−1)

...
... ... ukt

uk 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣

+ bn
2−n+t+1uk(t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(n−1) uk(n−2) −buk(t−1) 0 0

uk(n−2) uk(n−3) ukt ...
...

...
... 0 ... −buk(t−1)

...
...

... ... ukt

uk u0 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)

n
bn

2−n+tuk(n−1)uku
n−2
kt + bn

2−n+t+1uk(t−1)

(
−1

bn2−3n+t+2

)
det gk,n−1,t

= (−1)
n
bn

2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1) det gk,n−1,t.

Thus we have the conclusion.
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Lemma 3.2. For odd k > 0,

det gk,n,t =
(−1)

kn

uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

un
k(t−1)uk − bn

2−n+1uk(t−1)uknu
n−1
kt

]
(3.2)

Proof. (Induction on n) When n = 2, we have

det gk,2,t =

∣∣∣∣ u(3+t) −bu(2+t)

u(2+t) −bu(1+t)

∣∣∣∣ = −b
(
u(3+t)u(1+t) − u2

(2+t)

)
= bt+2u2

k.

Substituting n = 2 in the RHS of (3.2), we get

(−1)
2k

uk

[
b3uku

2
kt + b4u2

k(t−1)uk − b3uk(t−1)u2kukt

]
= b3

(
u2
kt + bu2

k(t−1) − uk(t−1)vkukt

)
= b3

(
u2
kt − uk(t+1)uk(t−1)

)
= bt+2u2

k,

as claimed. We assume that the claim is true for n − 1. Now we prove that the
claim is true for n. By the induction hypothesis and (3.1), we write for odd integer
k,

det gk,n,t

= (−1)
n
bn

2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1)

(−1)
k(n−1)

uk

×
[
bn

2−3n+3uk(n−2)u
n−1
kt + b(n−1)2un−1

k(t−1)uk − bn
2−3n+3uk(t−1)uk(n−1)u

n−2
kt

]
= (−1)

k(n−1)+1
bn

2

un
k(t−1) + (−1)

k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ un−2
kt uk(n−1)

[
(−1)

kn
bn

2−n+tuk − (−1)
k(n−1)

bn
2−n+1uk(t+1)uk(t−1)

uk

]
= (−1)

k(n−1)+1
bn

2

un
k(t−1) + (−1)

k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ (−1)
kn

bn
2−n+1u

n−2
kt uk(n−1)

uk

[
bt−1u2

k + uk(t+1)uk(t−1)

]
=

(−1)
kn

uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

un
k(t−1)uk − bn

2−n+1uk(t−1)uknu
n−1
kt

]
.

Thus the proof is complete.

Lemma 3.3. For n > 1,

dethk,n,t = (−1)
n+1

bn(n−1)uk(n+t)u
n−1
kt .
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Proof. Expanding dethk,n,t with respect to the last row gives us

dethk,n,t

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) bnukt −bn+1uk(t−1) 0 ... 0

uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

. . .
...

...
... 0 bnukt

. . . 0
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0
...

...
. . . bnukt

uk(n+t) 0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= uk(n+t) (−1)

n+1
(bnukt)

n−1

= (−1)
n+1

bn(n−1)uk(n+t)u
n−1
kt ,

as claimed.

Lemma 3.4. For n > 1 and k, t > 0,

vkn =
(
vkukn − 2buk(n−1)

)
/uk,

uk(n+t) =
(
uk(n+1)ukt − buknuk(t−1)

)
/uk.

Proof. The claims are obtained from the Binet formulae of {un} and {vn} .

Theorem 3.5. For n ≥ 2 and all integer t,

detRk,n,t = bn(n−1)
(
(−1)

kn−1
vknu

n
kt + (−1)

kn
bnun

k(t−1)

)
, (3.3)

where k is an odd integer.

Proof. From the de�nitions of gk,n,t and hk,n,t, we see that

detRk,n,t = det gk,n,t + dethk,n,t.

So the proof follows from Lemmas 3.2, 3.3 and 3.4.

When t = n in (3.2) and (3.3), we have the following result.

Corollary 3.6. For n > 1,

det gk,n,n = (−1)
kn

bn
2

un
k(n−1),

detRk,n,n = (−1)
kn

bn(n−1)
(
−vknu

n
kn + bnun

k(n−1)

)
.
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