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Abstract

We give a proof of the conjecture of Ramirez and Sirvent [1] on the generating
function of the incomplete Tribonacci numbers.

1 Introduction

In a recent paper of Ramirez and Sirvent [1], the authors have defined the incomplete Tri-
bonacci sequence of numbers and polynomials. They have also studied recurrence relations,
some properties of these numbers and polynomials, and the generating function of the in-
complete Tribonacci numbers.
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Ramirez and Sirvent conjectured that the generating function of the sequence {an}∞n=0 is∑
n≥0
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In this short note, we give a proof of this conjecture.

2 A proof of the conjecture

Let A (z) be the generating function of the sequence {an}∞n=0 . Now consider
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which proves the conjecture.
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