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Abstract. In [1], the author presents a recursive method to find closed forms
for two kinds of sums involving squares of binomial coefficients. We give an

elementary and explicit approach to compute these two kinds of sums. It is
based on a triangle of numbers which is akin to the Stirling subset numbers.

1. Introduction

In [1], the author presents a recursive method to find closed forms for the sums

Sm(n) =

n−1∑
k=0

km
(

2n

k

)2

, n > 1

and

Tm(n) =

n−2∑
k=0

km
(

2n− 1

k

)2

, n > 2

for a fixed integer m > 0. The method is based on the relationships between the
sums Sm(n) and Tm(n), given by

Sm(n) = 4n2
m−2∑
i=0

(
m− 2

i

)
Ti(n), n > 1
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and

Tm(n) = (2n− 1)2
m−2∑
i=0

(
m− 2

i

)[
Si(n− 1)− (n− 2)i

(
2n− 2

n

)2]
, n > 2

for m > 1. Since S0, S1, T0 and T1 are known, these recursions can be used to
compute Sm(n) and Tm(n). It should be noted that these formulae are not explicit
but recursive in nature.

In the present paper, we will provide explicit evaluations of these sums. The
method is completely elementary. The computations will be reduced to the instance
m = 0; this is, however, simple, since, by symmetry, the sums are basically half of
the full sum which is evaluated by the Vandermonde convolution. This reduction is
achieved by replacing the powers km by a linear combination of khkh and khkh−1.
The coefficients that appear here resemble the Stirling subset numbers (Stirling
numbers of the second kind). We recall the notation xh = x(x− 1) . . . (x− h + 1).

In the next section, auxiliary sums will be evaluated using the above men-
tioned symmetry argument. In the final section, the connecting coefficients will be
discussed, leading to the final evaluations.

Note that these evaluations involve roughly const ·m terms. Since we consider
m to be a given (small) number, the resulting formulae are in closed form.

2. Auxiliary sums

We evaluate here in an elementary way 4 families of sums.

Am(n) =

n−1∑
k=0

kmkm
(

2n

k

)(
2n

k

)

= (2n)m(2n)m
n−1∑
k=m

(
2n−m

k −m

)(
2n−m

k −m

)

= (2n)m(2n)m
n−1−m∑
k=0

(
2n−m

k

)(
2n−m

k

)
.

Now we distinguish two cases, first assume that m = 2h. Then

A2h(n) = (2n)2h(2n)2h
n−1−2h∑

k=0

(
2n− 2h

k

)(
2n− 2h

k

)

= (2n)2h(2n)2h
n−1−h∑
k=0

(
2n− 2h

k

)(
2n− 2h

k

)

− (2n)2h(2n)2h
n−1−h∑
k=n−2h

(
2n− 2h

k

)(
2n− 2h

k

)
= (2n)2h(2n)2h 1

2

[(
4n− 4h

2n− 2h

)
−
(

2n− 2h

n− h

)(
2n− 2h

n− h

)]
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− (2n)2h(2n)2h
n−1−h∑
k=n−2h

(
2n− 2h

k

)(
2n− 2h

k

)
.

If m = 2h + 1, then

A2h+1(n) = (2n)2h+1(2n)2h+1
n−2−2h∑

k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)

= (2n)2h+1(2n)2h+1
n−h−1∑
k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)

− (2n)2h+1(2n)2h+1
n−h−1∑

k=n−2h−1

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)
= (2n)2h+1(2n)2h+1 1

2

(
4n− 4h− 2

2n− 2h− 1

)
− (2n)2h+1(2n)2h+1

n−h−1∑
k=n−2h−1

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)
.

Now we consider a second class of sums, namely

Bm(n) :=

n−1∑
k=0

kmkm−1

(
2n

k

)(
2n

k

)

= (2n)m(2n)m−1
n−1∑
k=m

(
2n−m

k −m

)(
2n−m + 1

k −m + 1

)

= (2n)m(2n)m−1
n−m−1∑
k=0

(
2n−m

k

)(
2n−m + 1

k + 1

)
.

Now let m = 2h:

B2h(n) = (2n)2h(2n)2h−1
n−2h−1∑

k=0

(
2n− 2h

k

)(
2n− 2h + 1

k + 1

)

= (2n)2h(2n)2h−1
n−2h−1∑

k=0

(
2n− 2h

k

)(
2n− 2h

k + 1

)

+ (2n)2h(2n)2h−1
n−2h−1∑

k=0

(
2n− 2h

k

)(
2n− 2h

k

)

= (2n)2h(2n)2h−1
n−h−1∑
k=0

(
2n− 2h

k

)(
2n− 2h

k + 1

)

− (2n)2h(2n)2h−1
n−h−1∑
k=n−2h

(
2n− 2h

k

)(
2n− 2h

k + 1

)
+

1

2n− 2h + 1
A2h(n)
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= (2n)2h(2n)2h−1 1

2

(
4n− 4h

2n− 2h + 1

)
− (2n)2h(2n)2h−1

n−h−1∑
k=n−2h

(
2n− 2h

k

)(
2n− 2h

k + 1

)
+

1

2n− 2h + 1
A2h(n).

Now let m = 2h + 1:

B2h+1(n) = (2n)2h+1(2n)2h
n−2h∑
k=0

(
2n− 2h− 1

k

)(
2n− 2h

k + 1

)

= (2n)2h+1(2n)2h
n−2h∑
k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k + 1

)

+ (2n)2h+1(2n)2h
n−2h∑
k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)

= (2n)2h+1(2n)2h
n−h−1∑
k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k + 1

)

− (2n)2h+1(2n)2h
n−h−1∑

k=n−2h+1

(
2n− 2h− 1

k

)(
2n− 2h− 1

k + 1

)

+ (2n)2h+1(2n)2h
n−2−2h∑

k=0

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)

+ (2n)2h+1(2n)2h
n−2h∑

k=n−1−2h

(
2n− 2h− 1

k

)(
2n− 2h− 1

k

)
= (2n)2h+1(2n)2h 1

2

[(
4n− 4h− 2

2n− 2h

)
+

(
2n− 2h− 1

n− h

)(
2n− 2h− 1

n− h− 1

)]
− (2n)2h+1(2n)2h

n−h−1∑
k=n−2h+1

(
2n− 2h− 1

k

)(
2n− 2h− 1

k + 1

)
+

1

2n− 2h
A2h+1(n)

+ (2n)2h+1(2n)2h

((
2n− 2h− 1

n− 2h

)2

+

(
2n− 2h− 1

n− 2h− 1

)2
)
.

We need two more sums which can be reduced to the previous ones.

Cm(n) =

n−2∑
k=0

kmkm
(

2n− 1

k

)(
2n− 1

k

)

= (2n− 1)m(2n− 1)m
n−2∑
k=m

(
2n− 1−m

k −m

)(
2n− 1−m

k −m

)
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= (2n− 1)m(2n− 1)m
n−2−m∑
k=0

(
2n− 1−m

k

)(
2n− 1−m

k

)
=

1

4n2
Am+1(n).

Dm(n) =

n−2∑
k=0

kmkm−1

(
2n− 1

k

)(
2n− 1

k

)

= (2n− 1)m(2n− 1)m−1
n−2∑
k=m

(
2n− 1−m

k −m

)(
2n−m

k + 1−m

)

= (2n− 1)m(2n− 1)m−1
n−2−m∑
k=0

(
2n− 1−m

k

)(
2n−m

k + 1

)
=

1

4n2
Bm+1(n).

3. Evaluation of Slavik’s sums

First, we consider

Sm(n) =

n−1∑
k=0

km
(

2n

k

)(
2n

k

)
.

In order to do so, we write km as a linear combination of khkh and khkh−1.
It is clear that this can be done in a unique way, since the polynomials xhxh and
xhxh−1 form a basis for the vector space of the polynomials over R.

Then we are left with the sums

Ah(n) =

n−1∑
k=0

khkh
(

2n

k

)(
2n

k

)
and Bh(n) =

n−1∑
k=0

khkh−1

(
2n

k

)(
2n

k

)
which have been evaluated in the previous section.

For the other family Tm(n), the approach is similar:

Tm(n) =
n−2∑
k=0

km
(

2n− 1

k

)(
2n− 1

k

)
is reduced to a linear combination of

Ch(n) =

n−2∑
k=0

khkh
(

2n− 1

k

)(
2n− 1

k

)
and

Dh(n) =

n−2∑
k=0

khkh−1

(
2n− 1

k

)(
2n− 1

k

)
,

which are already evaluated.
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The only thing that is left is to identify the coefficients in the above mentioned
linear combinations.

Denote

pk(x) =

{
xkxk if k is even,

xkxk−1 if k is odd.

For convenience, we state the following simple result as a proposition.

Proposition 3.1. For nonnegative integers n,

xn =

n∑
k=0

an,kpk(x),

where

an+1,k = an,k−1 + bk/2can,k
with initial conditions an,0 = [n = 0] and an,n = 1.

Proof. Since

xp2k(x) = p2k+1(x) + kp2k(x)

and

xp2k+1(x) = p2k+2(x) + kp2k+1(x),

we write

xn+1 =

n+1∑
k=0

an+1,kpk(x) =

n∑
k=0

an,kxpk(x)

=

n∑
k=0

an,k

[
pk+1(x) +

⌊k
2

⌋
pk(x)

]
.

Now comparing coefficients, we get the recurrence

an+1,k = an,k−1 +
⌊k

2

⌋
an,k.

Plugging in x = 0 leads to an,0 = [n = 0]; the comparison of the highest power n
leads to an,n = 1, as claimed. �

For interest, here is a small table of these values.

n\k 0 1 2 3 4 5 6

0 1
1 0 1
2 0 0 1
3 0 0 1 1
4 0 0 1 2 1
5 0 0 1 3 4 1
6 0 0 1 4 11 6 1
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