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Abstract
In this paper, we consider the weighted sums of products of Lucas sequences of the

form
i . T'mk$
k mkom(tn+k)»

k=0
where 7, and s,, are the terms of Lucas sequences {U,, } and {V,,} for some positive
integers t and m. By using generating function methods, we compute the weighted
sums of products of Lucas sequences and show that these sums could be expressed
via terms of the Lucas sequences.

1. Introduction

Define second order linear recurrences {U,} and {V,,} for n > 0 as
U, = pUp-1+U,2,
Vi = pVa1+ Vaoo,

where Uy =0, Uy =1 and V) = 2, V; = p, respectively. If p = 1, then U,, = F,,
(nth Fibonacci number) and V,, = L,, (nth Lucas number).
The Binet formulas of {U,} and {V,,} are
Un _ a® — ﬁ”
a—p

where a, = (p:i:\/Z) /2 and A = p? + 4.

and V,, = a" + 5",
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Let A(z) and B (z) be the exponential generating functions of sequences {a,}
and {b,}, that is,

" "
A(z) = Zanﬁ and B (z) = Zb"ﬁ
n>0 : n>0 :

Then the convolution of them is given by

A@)B(x)=Y (;: (Z) akbn_k> %T

n>0

Many authors have considered and computed many kinds of binomial sums as
well as weighted binomial sums with terms of certain number sequences. As a
consequence of convolution of two exponential generating functions, we have the
following results from the literature (see [2]):

=0 =0
- n - n

Lmianfmiv . Lmsznfmz 1.2
() () .

In this paper, motivated by (1.1) and (1.2), we consider the following new four
kinds of weighted binomial sums with the product of terms of the sequences {U, }
and {V,,} :

- (:) -(:)

N UnmiVin(kn+i)» ) ViniUnm(knti)»
S (5 Jumbincenson 32 () Vit
n (”)U U i(“)v Vi

. miY m(kn+1i)s . mi Vm(kn+i)
; i (kn+1) 2\ (kn+i)
for some integers k and m. We consider the sums above and then show that the sums
could nicely be expressed in terms of the terms of the sequences {U,} and {V,,}.
Because of the indices of the terms in the sums, the convolution of exponential
generating functions can not be used for computing these sums. Our approach for
computing these kind of sums is mainly to use generating function methods and
the Binet formula of the sequences. For computing weighted binomial sums with
the product of terms of binary sequences and using generating functions in deriving
combinatorial identities, we refer to [1, 3].

2. The main results

First we give a useful auxiliary lemma and its direct consequences. After this we give
our main results. By the Binet formulas of {U,} and {V,}, we have the following
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results without proof:

Lemma 1. For odd m,
1+ a®™ = a™U,, VA and (1 + ,B2m) = —B"U, VA,

and for even m,
14 a®™ =a™V, and 1+ 2™ = ™V,,.

As straightforward consequences of Lemma 1, we have the following results.

Corollary 1. Let m be a nonnegative odd integer. Then for n > 0,

Y " U™ Aanlen an 18 Odd,
; <Z)U2ml B Um { A%Umn an 1S even.

Proof. By Lemma 1, we write for odd n,

(1+a®)" =a™ULA% and (1+ *™)" = g™ UL A%
or
" /n ) n " /n ) n
2 <i)a2ml =a™"Up (p* +4)” and ; <i>ﬂ2’m = —B""Up (0* +4)7
and so

n 2mi _ R2mi N
=0

) a—pf
Z (n> U2mi = A ";1 UTT,LFLanv
1
=0

as claimed. For even n, consider

(1+a*™)" = o™ UnAfand (1+ 57")" = g™"URAS

or

> (”) Q™ = o™ UL AT and Y (”) g2 — gy A

: 1 c ?

=0 =0
and so

<n) (a2mi _ BQmi) — A% U'rTrLL (amn _ 6mn>
7
=0

=0

as claimed.
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For example, for odd m > 0 and n > 0, we have

zn: <n> FQm,L' — FT';}L { 5”i1 Lmn 1f n -iS Odd7
i=o \' 52 F,y  if m is even,

which can be found in [4].

Corollary 2. Let m be a nonnegative even integer. Then for n > 0,

i=0
im0 \!
Proof. By Lemma 1, we have that for even m,
14 a?™ =a™V,, and 1 + %™ = g™V,
and write
(1+ a2m)" =™V and (1+ [32’")” ="V,

which, by the binomial theorem, gives us

n n
n ; n ;
§ : < _)0{277” — amnvrz and § : < .)BQTH’L — ﬂmnvrx.
2 2
i=0

i=0
By subtracting these two equalities side by side and the Binet formula of {U,}, we

obtain
n

i=0
By adding the above two equalities and the Binet formula of {V,,}, we obtain

n

i=0
as claimed. 0

For even m > 0 and n > 0, we obtain

n

n
n n

g ( ) Fopi = LZLan and § ( .)LZmi = Lzlann-
1 =0 1

=0
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Theorem 1. Let k be a nonnegative integer. For odd m,

n

" . _Alzlim ) Uksymn  if nois even,
; <Z,>Umzvkmn+mz = Alz Um { ‘/(kJrl)mn an is odd. (21)

For even m,
n

n
Z (Z) Umivkanrmi = VrZUmn(k—i-l) - 2nUkmn

=0

Proof. Multiplying the left hand side of (2.1) by z™ and summing over n and by
the Binet formulas of {U,,} and {V,,}, we derive for odd m,

n>0 =0
_ - i 3 Z P Z <7Z> ((akaneri _ IBkaneri) _ (akmn _ l@kmn) (71)1)
n>0  i=0
= - i 3 Zamm' <7Z> (akmz)n B Zﬂzmi Z (?) (Bkmz)n
120 n>0 >0 n>0
1 ” ,
_a — B Z (7;) (akmn _ 5kmn) (_1)7711 prg
n>0 i=0

— (akmz))* (1 (Brmz))T

i>0 (1 - (O‘kmz))H—l i>0 (1 - (ﬁkmz))“—l

0
1 ( (—1)™ abmz)’ S (—1)™ gFm.2)’

1—akmz 1—pkmz

B
— 1 1 1 1 1
T oa— ﬂ (]. — akmz) 1— am(k+2) 5 (]_ _ Bkmz) 1— gmk+2)
1

1 1
a-8 (1 —akm (14 (-1)™)z 11— 1+ (-1 z)

1 1 1 1 11
N oz—,@(l—zakm(1+a2m)_1—z[3km(1+52m)>_a—ﬂ( -1
1 mn m\T cmn m\ " n
= aﬂg(ak (1+a2 ) — ¥ (1+62 ))z

Therefore, we get the identity

n

Z (?) Umin:mn+mi - Z (7;) U2mi+k:mn'

=0 =0
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Using Lemma 1, we write for even n,

aiiﬂ (akm" (14 a2™)" — ghmn (14 Bzm)">
= oo (o (U V) = g (-0, VE)')
= aiﬂ( kg AT — R TR A
= ULAZUgirymn-

On the other hand, we get for odd n

- i ﬂ (akmn (1 + a?m)” . Bkmn (1 +52m)n>

- o (0 (o) - (- Va)')
= p21+ = (akm”am”U:;A% + gEmn g U A

_ akmn Oémn Un Bkmnﬁmn Un

= ljmA 7 Vr(k-‘rl)mna

as claimed. By combining the above two results, the proof is complete for the case
m is odd.
Now we consider the case m is even:

S| s (1) @ - s (1) (5

i>0 n>0 >0 n>0
ﬁ Z Z < > kmn __ ﬂkmn) o
n>0 =0
] ) (gnien)
~a-p g ( L= (abmz)™ (1 - (5’“"2))i+1>
- 1 (akmz)i - (ﬂkm )
a-p ; (1= (akmz))™ g (1—(BEmz))™

_ 1 1 1 1 1
= o — ﬁ (1 — akmz) 1— am(k+2) , (1 _ Bkmz> 1 5m(k+2>z

1—akmy ﬁkmz

1 1 1
a—B\1—-2akmy 1 —2Bkmy
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o 1 1
- a-p (1—zakm(l+a2m) a l—zﬁkm(l—l—ﬁgm))

1 1 1
a— B \1—-2akmy 1-—28kmy
1

a—p

n>0
By Lemma 1, we write

1

a—p3
) et

= anU7rm(k+1) = 2"Ukman,

as claimed.

Theorem 2. Let k be a nonnegative integer. For odd m,

n . .

Z (n)v Vi = N { Vik+1ymn  if 1 is even,
7: m mn—+ma — m

i=0

Ulk+1ymn  if n is odd.

For even m,
n

n
Z (Z) Vminanrmi = VnZVv(k—Q—l)mn + 2ndmn
=0

(akmn (amvm)n o 5k:mn (ﬂmvm)n _9on (akmn o 6kmn))

Z (akmn (1 + a2m)n _ 6kmn (1 + BZm)” _9on (akmn _ 6kmn)) P

(2.2)

Proof. Multiplying the left hand side of (2.2) by 2™ and summing over n, we write

_ <n> (akmn+2im + 5kmn+2mi + (_1)im (akmn + ﬁkmn)) g
=0

n>0
>0 nso N i>0 nso N\

IO (”) (akm - ghmmy n

_ (((a’“ﬂ“mzY N (ﬂ’“m“mz)i)
0

1-— oz’“mz)H_1 (1- ﬁ’€’",z)i'~_1
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()™ akmz)'  ((~1)" ghmz)
+Z ( (1- akmz)i-H + (1- ﬂkmz)i-‘rl )

i>0

1 1
1— zak™ (1 + a?m) + 1 —z8Fm (14 32™)

1 1
T (L (™) T2 (L4 ()

If m is even, then by Lemma 1, we write

Z Z (7;> Vnnvkmn-&-mz'zn

n>0 i=0
1 1 1 1

-1 zamk+D Y * 1 — zpmE+Y, + 1 — 2zakm + 1 — 2zpBkm

_ Z ((am(k—i-l)n + 6m(k+1)n) VT:I/L +on (akmn + ﬁkmn)) o
n>0

which gives us

<n) Vminanrmi = Vnz‘/(k+1)mn + 2nd:mn~
=0

7

If m is odd, then

Z Z (?) Vminmn+miZ7L

n>0i=0
1 1

1 — zakm (amUm\/]m> " 1 — zpkm (—ﬂmUm\/zm)
D ()

n>0

Now we consider two cases: first if n is odd, then we obtain

Z Z (?) Vminern+mizn

n>0i=0
_ Z (a(k-&-l)an:rzL (p2 +4)% _ Bm(k+l)nU7vrzL (p2 _'_4)%) g

n>0
— (UT:LLA% (a(k+1)mn _ Bm(k—l—l)n)) Py

n>0

B (k4+1)mn _ gm(k+1)n

- ST ()

n>0 l @ B

— i (OB A" Ut aymn)
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Second, if n is even, then we obtain

n>0 i=0

_ Z (a(k+1)angLA% + B(kﬂ)an:ﬁA%> g
n>0

I
™

(U;EL (p2 +4)% (a(kJrl)mn + B(k+1)mn>) n

n>0

n>0

By combining the last two results, we prove the claim for odd m. Thus the proof is
complete. O

Similar to the proof methods of Theorems 1 and 2, we give the following results
without proof.

Theorem 3. Let k be a nonnegative integer. For odd m,

n

" . _Alzlyn § Utkrrymn  if nois even,
; (i)szUk:mn+mz = Alz Um { ‘/(k-‘rl)mn an is odd.

For even m,
n

Z (?) VmiUkanrmi = VTZUmn(lﬁ»l) + 2nUk:mn
1=0

Theorem 4. Let k be a nonnegative integer. For odd m,

~ (" , Al e Vik+1ymn  if n is even,
; (i)Uszkmn+mz =AlL"2 Um { U(kJrl)mn an is odd.

For even m,

A

(2

"\ (n 1
(Z> UmiUkanrmi N (Vyz‘/(kJrl)mn - 2ndmn) :
=0
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