
SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS
SEQUENCES

Emrah Kılıç
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Abstract

In this paper, we consider the weighted sums of products of Lucas sequences of the
form

n∑
k=0

(
n

k

)
rmksm(tn+k),

where rn and sn are the terms of Lucas sequences {Un} and {Vn} for some positive
integers t and m. By using generating function methods, we compute the weighted
sums of products of Lucas sequences and show that these sums could be expressed
via terms of the Lucas sequences.

1. Introduction

Define second order linear recurrences {Un} and {Vn} for n > 0 as

Un = pUn−1 + Un−2,

Vn = pVn−1 + Vn−2,

where U0 = 0, U1 = 1 and V0 = 2, V1 = p, respectively. If p = 1, then Un = Fn
(nth Fibonacci number) and Vn = Ln (nth Lucas number).

The Binet formulas of {Un} and {Vn} are

Un =
αn − βn

α− β
and Vn = αn + βn,

where α, β =
(
p±
√

∆
)
/2 and ∆ = p2 + 4.
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Let A (x) and B (x) be the exponential generating functions of sequences {an}
and {bn} , that is,

A (x) =
∑
n≥0

an
xn

n!
and B (x) =

∑
n≥0

bn
xn

n!
.

Then the convolution of them is given by

A (x)B (x) =
∑
n≥0

(
n∑
k=0

(
n

k

)
akbn−k

)
xn

n!
.

Many authors have considered and computed many kinds of binomial sums as

well as weighted binomial sums with terms of certain number sequences. As a

consequence of convolution of two exponential generating functions, we have the

following results from the literature (see [2]):

n∑
i=0

(
n

i

)
FmiLmn−mi ,

n∑
i=0

(
n

i

)
FmiFmn−mi, (1.1)

n∑
i=0

(
n

i

)
LmiFmn−mi ,

n∑
i=0

(
n

i

)
LmiLmn−mi. (1.2)

In this paper, motivated by (1.1) and (1.2), we consider the following new four

kinds of weighted binomial sums with the product of terms of the sequences {Un}
and {Vn} :

n∑
i=0

(
n

i

)
UmiVm(kn+i),

n∑
i=0

(
n

i

)
VmiUm(kn+i),

n∑
i=0

(
n

i

)
UmiUm(kn+i),

n∑
i=0

(
n

i

)
VmiVm(kn+i),

for some integers k and m. We consider the sums above and then show that the sums

could nicely be expressed in terms of the terms of the sequences {Un} and {Vn} .
Because of the indices of the terms in the sums, the convolution of exponential

generating functions can not be used for computing these sums. Our approach for

computing these kind of sums is mainly to use generating function methods and

the Binet formula of the sequences. For computing weighted binomial sums with

the product of terms of binary sequences and using generating functions in deriving

combinatorial identities, we refer to [1, 3].

2. The main results

First we give a useful auxiliary lemma and its direct consequences. After this we give

our main results. By the Binet formulas of {Un} and {Vn} , we have the following
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results without proof:

Lemma 1. For odd m,

1 + α2m = αmUm
√

∆ and
(
1 + β2m

)
= −βmUm

√
∆,

and for even m,

1 + α2m = αmVm and 1 + β2m = βmVm.

As straightforward consequences of Lemma 1, we have the following results.

Corollary 1. Let m be a nonnegative odd integer. Then for n > 0,

n∑
i=0

(
n

i

)
U2mi = Unm

{
∆

n−1
2 Vmn if n is odd,

∆
n
2 Umn if n is even.

Proof. By Lemma 1, we write for odd n,(
1 + α2m

)n
= αmnUnm∆

n
2 and

(
1 + β2m

)n
= −βmnUnm∆

n
2

or

n∑
i=0

(
n

i

)
α2mi = αmnUnm

(
p2 + 4

)n
2 and

n∑
i=0

(
n

i

)
β2mi = −βmnUnm

(
p2 + 4

)n
2

and so

n∑
i=0

(
n

i

)(
α2mi − β2mi

α− β

)
= ∆

n−1
2 Unm (αmn + βmn)

n∑
i=0

(
n

i

)
U2mi = ∆

n−1
2 UnmVmn,

as claimed. For even n, consider(
1 + α2m

)n
= αmnUnm∆

n
2 and

(
1 + β2m

)n
= βmnUnm∆

n
2

or
n∑
i=0

(
n

i

)
α2mi = αmnUnm∆

n
2 and

n∑
i=0

(
n

i

)
β2mi = βmnUnm∆

n
2

and so

n∑
i=0

(
n

i

)(
α2mi − β2mi

)
= ∆

n
2 Unm (αmn − βmn)

n∑
i=0

(
n

i

)
U2mi = ∆

n
2 UnmUmn,

as claimed.
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For example, for odd m > 0 and n > 0, we have

n∑
i=0

(
n

i

)
F2mi = Fnm

{
5

n−1
2 Lmn if n is odd,

5
n
2 Fmn if n is even,

which can be found in [4].

Corollary 2. Let m be a nonnegative even integer. Then for n > 0,

n∑
i=0

(
n

i

)
U2mi = V nmUmn,

n∑
i=0

(
n

i

)
V2mi = V nmVmn.

Proof. By Lemma 1, we have that for even m,

1 + α2m = αmVm and 1 + β2m = βmVm

and write (
1 + α2m

)n
= αmnV nm and

(
1 + β2m

)n
= βmnV nm,

which, by the binomial theorem, gives us

n∑
i=0

(
n

i

)
α2mi = αmnV nm and

n∑
i=0

(
n

i

)
β2mi = βmnV nm.

By subtracting these two equalities side by side and the Binet formula of {Un}, we

obtain
n∑
i=0

(
n

i

)
U2mi = V nmUmn.

By adding the above two equalities and the Binet formula of {Vn}, we obtain

n∑
i=0

(
n

i

)
V2mi = V nmVmn,

as claimed.

For even m > 0 and n > 0, we obtain

n∑
i=0

(
n

i

)
F2mi = LnmFmn and

n∑
i=0

(
n

i

)
L2mi = LnmLmn.
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Theorem 1. Let k be a nonnegative integer. For odd m,

n∑
i=0

(
n

i

)
UmiVkmn+mi = ∆b

n
2 cUnm

{
U(k+1)mn if n is even,
V(k+1)mn if n is odd.

(2.1)

For even m,
n∑
i=0

(
n

i

)
UmiVkmn+mi = V nmUmn(k+1) − 2nUkmn.

Proof. Multiplying the left hand side of (2.1) by zn and summing over n and by

the Binet formulas of {Un} and {Vn}, we derive for odd m,

∑
n≥0

zn
n∑
i=0

(
n

i

)
UmiVkmn+mi

=
1

α− β
∑
n≥0

zn
n∑
i=0

(
n

i

)((
αkmn+2mi − βkmn+2mi

)
−
(
αkmn − βkmn

)
(−1)

i
)

=
1

α− β

∑
i≥0

α2mi
∑
n≥0

(
n

i

)(
αkmz

)n −∑
i≥0

β2mi
∑
n≥0

(
n

i

)(
βkmz

)n
− 1

α− β
∑
n≥0

n∑
i=0

(
n

i

)(
αkmn − βkmn

)
(−1)

mi
zn

=
1

α− β
∑
i≥0

( (
αm(k+2)z

)i
(1− (αkmz))

i+1
−

(
βm(k+2)z

)i
(1− (βkmz))

i+1

)

− 1

α− β

∑
i≥0

(
(−1)

m
αkmz

)i
(1− (αkmz))

i+1
−
∑
i≥0

(
(−1)

m
βkmz

)i
(1− (βkmz))

i+1


=

1

α− β

(
1

(1− αkmz)
1

1− αm(k+2)z
1−αkmz

− 1

(1− βkmz)
1

1− βm(k+2)z
1−βkmz

)

− 1

α− β

(
1

1− αkm (1 + (−1)
m

) z
− 1

1− βkm (1 + (−1)
m

) z

)
=

1

α− β

(
1

1− zαkm (1 + α2m)
− 1

1− zβkm (1 + β2m)

)
− 1

α− β
(1− 1)

=
1

α− β
∑
n≥0

(
αkmn

(
1 + α2m

)n − βkmn (1 + β2m
)n)

zn.

Therefore, we get the identity

n∑
i=0

(
n

i

)
UmiVkmn+mi =

n∑
i=0

(
n

i

)
U2mi+kmn.
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Using Lemma 1, we write for even n,

1

α− β

(
αkmn

(
1 + α2m

)n − βkmn (1 + β2m
)n)

=
1

α− β

(
αkmn

(
αmUm

√
∆
)n
− βkmn

(
−βmUm

√
∆
)n)

=
1

α− β
(
αkmnαmnUnm∆

n
2 − βkmnβmnUnm∆

n
2

)
= Unm∆

n
2 U(k+1)mn.

On the other hand, we get for odd n

1

α− β

(
αkmn

(
1 + α2m

)n − βkmn (1 + β2m
)n)

=
1

α− β

(
αkmn

(
αmUm

√
∆
)n
− βkmn

(
−βmUm

√
∆
)n)

=
1√
p2 + 4

(
αkmnαmnUnm∆

n
2 + βkmnβmnUnm∆

n
2

)
= αkmnαmnUnm∆

n−1
2 + βkmnβmnUnm∆

n−1
2

= Unm∆
n−1
2 V(k+1)mn,

as claimed. By combining the above two results, the proof is complete for the case

m is odd.

Now we consider the case m is even:

1

α− β

∑
i≥0

α2mi
∑
n≥0

(
n

i

)(
αkmz

)n −∑
i≥0

β2mi
∑
n≥0

(
n

i

)(
βkmz

)n
− 1

α− β
∑
n≥0

n∑
i=0

(
n

i

)(
αkmn − βkmn

)
zn

=
1

α− β
∑
i≥0

( (
αm(k+2)z

)i
(1− (αkmz))

i+1
−

(
βm(k+2)z

)i
(1− (βkmz))

i+1

)

− 1

α− β

∑
i≥0

(
αkmz

)i
(1− (αkmz))

i+1
−
∑
i≥0

(
βkmz

)i
(1− (βkmz))

i+1


=

1

α− β

(
1

(1− αkmz)
1

1− αm(k+2)z
1−αkmz

− 1

(1− βkmz)
1

1− βm(k+2)z
1−βkmz

)

− 1

α− β

(
1

1− 2αkmz
− 1

1− 2βkmz

)
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=
1

α− β

(
1

1− zαkm (1 + α2m)
− 1

1− zβkm (1 + β2m)

)
− 1

α− β

(
1

1− 2αkmz
− 1

1− 2βkmz

)
=

1

α− β
∑
n≥0

(
αkmn

(
1 + α2m

)n − βkmn (1 + β2m
)n − 2n

(
αkmn − βkmn

))
zn

By Lemma 1, we write

1

α− β
(
αkmn (αmVm)

n − βkmn (βmVm)
n − 2n

(
αkmn − βkmn

))
=

1

α− β

(
V nm

(
αmn(k+1) − βmn(k+1)

)
− 2n

(
αkmn − βkmn

))
= V nmUmn(k+1) − 2nUkmn,

as claimed.

Theorem 2. Let k be a nonnegative integer. For odd m,

n∑
i=0

(
n

i

)
VmiVkmn+mi = ∆b

n+1
2 cUnm

{
V(k+1)mn if n is even,
U(k+1)mn if n is odd.

(2.2)

For even m,
n∑
i=0

(
n

i

)
VmiVkmn+mi = V nmV(k+1)mn + 2nVkmn.

Proof. Multiplying the left hand side of (2.2) by zn and summing over n, we write

∑
n≥0

n∑
i=0

(
n

i

)
VmiVkmn+miz

n

=
∑
n≥0

n∑
i=0

(
n

i

)(
αmi + βmi

) (
αkmn+mi + βkmn+mi

)
zn

=
∑
n≥0

n∑
i=0

(
n

i

)(
αkmn+2im + βkmn+2mi + (−1)

im (
αkmn + βkmn

))
zn

=
∑
i≥0

α2mi
∑
n≥0

(
n

i

)(
αkmz

)n
+
∑
i≥0

β2mi
∑
n≥0

(
n

i

)(
βkmz

)n
+
∑
i≥0

(−1)
im
∑
n≥0

(
n

i

)(
αkmn + βkmn

)
zn

=
∑
i≥0

( (
αkm+2mz

)i
(1− αkmz)i+1

+

(
βkm+2mz

)i
(1− βkmz)i+1

)
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+
∑
i≥0

((
(−1)

m
αkmz

)i
(1− αkmz)i+1

+

(
(−1)

m
βkmz

)i
(1− βkmz)i+1

)

=
1

1− zαkm (1 + α2m)
+

1

1− zβkm (1 + β2m)

+
1

1− zαkm (1 + (−1)
m

)
+

1

1− zβkm (1 + (−1)
m

)
.

If m is even, then by Lemma 1, we write∑
n≥0

n∑
i=0

(
n

i

)
VmiVkmn+miz

n

=
1

1− zαm(k+1)Vm
+

1

1− zβm(k+1)Vm
+

1

1− 2zαkm
+

1

1− 2zβkm

=
∑
n≥0

((
αm(k+1)n + βm(k+1)n

)
V nm + 2n

(
αkmn + βkmn

))
zn

which gives us

n∑
i=0

(
n

i

)
VmiVkmn+mi = V nmV(k+1)mn + 2nVkmn.

If m is odd, then∑
n≥0

n∑
i=0

(
n

i

)
VmiVkmn+miz

n

=
1

1− zαkm
(
αmUm

√
p2 + 4

) +
1

1− zβkm
(
−βmUm

√
p2 + 4

)
=

∑
n≥0

((
α(k+1)mUm

√
p2 + 4

)n
+
(
−βm(k+1)Um

√
p2 + 4

)n)
zn.

Now we consider two cases: first if n is odd, then we obtain∑
n≥0

n∑
i=0

(
n

i

)
VmiVkmn+miz

n

=
∑
n≥0

(
α(k+1)mnUnm

(
p2 + 4

)n
2 − βm(k+1)nUnm

(
p2 + 4

)n
2

)
zn

=
∑
n≥0

(
Unm∆

n
2

(
α(k+1)mn − βm(k+1)n

))
zn

=
∑
n≥0

(
Unm∆

n−1
2

(
α(k+1)mn − βm(k+1)n

α− β

))
zn

=
∑
n≥0

(
Unm∆

n−1
2 U(k+1)mn

)
zn.
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Second, if n is even, then we obtain

∑
n≥0

n∑
i=0

(
n

i

)
VmiVkmn+miz

n

=
∑
n≥0

(
α(k+1)mnUnm∆

n
2 + β(k+1)mnUnm∆

n
2

)
zn

=
∑
n≥0

(
Unm

(
p2 + 4

)n
2

(
α(k+1)mn + β(k+1)mn

))
zn

=
∑
n≥0

Unm∆
n
2 V(k+1)mnz

n.

By combining the last two results, we prove the claim for odd m. Thus the proof is

complete.

Similar to the proof methods of Theorems 1 and 2, we give the following results

without proof.

Theorem 3. Let k be a nonnegative integer. For odd m,

n∑
i=0

(
n

i

)
VmiUkmn+mi = ∆b

n
2 cUnm

{
U(k+1)mn if n is even,
V(k+1)mn if n is odd.

For even m,
n∑
i=0

(
n

i

)
VmiUkmn+mi = V nmUmn(k+1) + 2nUkmn

Theorem 4. Let k be a nonnegative integer. For odd m,

n∑
i=0

(
n

i

)
UmiUkmn+mi = ∆b

n−1
2 cUnm

{
V(k+1)mn if n is even,
U(k+1)mn if n is odd.

For even m,

n∑
i=0

(
n

i

)
UmiUkmn+mi =

1

∆

(
V nmV(k+1)mn − 2nVkmn

)
.



INTEGERS: 13 (2013) 10

References
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