Spectral Properties of Some Combinatorial Matrices

Emrah Kilic1, Gabriela N. Stǎnicǎ2, Pantelimon Stǎnicǎ3*

1 TOBB Economics and Technology University, Mathematics Department
 06560 Sogutozu, Ankara, Turkey; ekilic@etu.edu.tr
2 Department of Mathematics. California State University – Monterey Bay
 Monterey, CA 93955, USA; gnstanica@gmail.com
3 Department of Applied Mathematics, Naval Postgraduate School
 Monterey, CA 93943, USA; pstanica@nps.edu

November 29, 2008

Abstract

In this paper we investigate the spectra and related questions for various combinatorial matrices, generalizing work by Carlitz, Cooper and Kennedy.

1 Introduction

In [8], R. Peele and P. Stǎnicǎ studied $n \times n$ matrices with the (i, j) entry the binomial coefficient $\binom{j-1}{i-1}$, respectively, $\binom{n-1}{n-j}$ and derived many interesting results on powers of these matrices. In [10], one of us found that the same is true for a much larger class of what he called netted matrices, namely matrices with entries satisfying a certain type of recurrence among the entries of all 2×2 cells.

Let R_n be the matrix whose (i, j) entries are $a_{i,j} = \binom{i-1}{n-j}$, which satisfy

$$a_{i,j-1} = a_{i-1,j-1} + a_{i-1,j}.$$ \hfill (1)

The previous recurrence can be extended for $i \geq 0, j \geq 0$, using the boundary conditions $a_{1,n} = 1$, $a_{1,j} = 0, j \neq n$. Remark the following consequences of the boundary conditions and recurrence (1): $a_{i,j} = 0$ for $i + j \leq n$, and $a_{i,n+1} = 0, 1 \leq i \leq n$.

The matrix R_n was firstly studied by Carlitz [2] who gave explicit forms for the eigenvalues of R_n. Let $f_{n+1}(x) = \det(xI - R_n)$ be the characteristic polynomial of R_n. Thus

$$f_n(x) = \sum_{r=0}^{n+1} (-1)^{r(r+1)/2} \binom{n}{r} F_{x^{n-r}}$$

*Also Associated to the Institute of Mathematics of Romanian Academy, Bucharest, Romania
where \(^{(n)}_{(r)}\) \(F\) denote the Fibonomial coefficient, defined (for \(n \geq r > 0\)) by
\[
^{(n)}_{(r)} = \frac{F_1 F_2 \ldots F_n}{(F_1 F_2 \ldots F_r)(F_1 F_2 \ldots F_{n-r})}
\]
with \(^{(n)}_{(n)}\) \(F\) = \(^{(n)}_{(0)}\) \(F\) = 1. Carlitz showed that
\[
f_n(x) = \prod_{j=0}^{n-1} \left(x - \phi^j \bar{\phi}^{n-j}\right)
\]
where \(\phi, \bar{\phi} = \left(1 \pm \sqrt{5}\right)/2\). Thus the eigenvalues of \(R_n\) are \(\phi^n, \phi^{n-1}\bar{\phi}, \ldots, \phi\bar{\phi}^{n-1}, \phi^n\). We shall give another proof of this result in the next section.

In [8] it was proved that the entries of the power \(R_n^e\) satisfy the recurrence
\[
F_{e-1}a_{i,j}^{(e)} = F_e a_{i-1,j}^{(e)} + F_{e+1} a_{i-1,j-1}^{(e)} - F_e a_{i-1,j-1}^{(e)}
\]
where \(F_e\) is the Fibonacci sequence. Closed forms for all entries of \(R_n^e\) were not found, but several results concerning the generating functions of rows and columns were obtained (see [8, 10]). For instance, the entries in the first row and column of \(R_n^e\) are
\[
a_{i,1}^{(e)} = \left(\begin{array}{c} n-1 \\ j-1 \end{array}\right) F_{e-1}^{n-j} F_e^{j-1}
\]
Further, the generating function for the \((i,j)\)-th entry of the \(e\)-th power of a generalization of \(R_n\), namely
\[
Q_n(a,b) = \left(a^{i+j-n-1}b^{n-j}\left(\begin{array}{c} i-1 \\ n-j \end{array}\right)\right)_{1 \leq i,j \leq n}
\]
is
\[
B_n(x,y) = \frac{(U_{e-1} + U_{e}y)(b U_{e-1} + y U_{e})^{n-1}}{U_{e-1} + U_{e}y - x(U_{e} + U_{e+1}y)}.
\]
Certainly, \(Q_n(1,1) = R_n\). As an example,
\[
Q_6(a,b) =
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & b & a \\
0 & 0 & 0 & b^2 & 2ab & a^2 \\
0 & 0 & b^3 & 3ab^2 & 3a^2b & a^3 \\
0 & b^4 & 4ab^3 & 6a^2b^2 & 4a^3b & a^4 \\
b^5 & 5ab^4 & 10a^2b^3 & 10a^3b^2 & 5a^4b & a^5
\end{pmatrix}
\]
Regarding this generalization, in [3], the authors gave the characteristic polynomial of \(Q_n(a,b)\) and the trace of \(k\)th power of \(Q_n(a,b)\), that is, \(\operatorname{tr}(Q_n^k(a,b))\), by using the method of Carlitz [2].
Lemma 1. Let \(g_n(x) \) denote the characteristic polynomial of \(Q_n(a,b) \). Thus

\[
g_n(x) = \sum_{i=0}^{n} (-1)^{(i+1)/2} b^{(i-1)/2} \binom{n}{i} U^{n-i}
\]

and

\[
\text{tr}\left(Q_k^n(a,b) \right) = \frac{U_{kn}}{U_k},
\]

where \(\binom{n}{i} U \) stands for the generalized Fibonomial coefficient, defined by

\[
\binom{n}{r}_U = \frac{U_1 U_2 \ldots U_n}{(U_1 U_2 \ldots U_r) (U_1 U_2 \ldots U_{n-r})},
\]

for \(n \geq i > 0 \), where \(\binom{n}{n}_U = \binom{n}{0}_U = 1 \).

One of us extended in [10] some of these results to netted matrices, say \(R_{\alpha,\beta,\gamma,\delta}^n \), whose entries \(a_{i,j}, i \geq 0, j \geq 0 \) satisfy (for \(i \geq 1, j \geq 1 \))

\[
\delta a_{i,j} = \alpha a_{i-1,j} + \beta a_{i-1,j-1} + \gamma a_{i,j-1},
\]

with the boundary conditions

\[
\beta a_{i,0} + \gamma a_{i+1,0} = 0, \quad \text{for all } 1 \leq i \leq n-1
\]

\[
\delta a_{i,n+1} - \alpha a_{i,n+1} = 0, \quad \text{for all } 1 \leq i \leq n-1.
\]

It was shown in [10] that the entries of any power of such a matrix will satisfy a similar recurrence, and generating functions for these powers were found. In the case of the Fibonacci sequence, the generating function of the \(i \)-th row of \(R_{e}^n \) is

\[
r_i^{(e)}(x) = \sum_{j \geq 1} a_{i,j}^{(e)} x^{j-1} = (F_e + F_{e+1}x)^{i-1}(F_{e-1} + F_e x)^{n-i}
\]

and, if \(e > 1 \), the generating function for the \(j \)-th column of \(R_{e}^n \) is

\[
c_j^{(e)}(x) = \left(\frac{F_{e+1}x - F_e}{F_{e-1} - F_e x} \right)^{j-1} \frac{F_{e-1}^{n-1}}{F_{e-1} - F_e x} \left[1 + \sum_{s=1}^{j-1} \binom{n}{s} \left(\frac{F_e(F_{e-1} - F_e x)}{F_{e-1}(F_{e+1}x - F_e)} \right)^s \right].
\]

where \(c_j^{(1)}(x) = (1 - x)^{j-1-n} x^{n-j} \).

The matrix \(Q_n(a,b) \) was introduced as a generalization of the Fibonacci matrix \(Q = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \) which has the property that \(Q^n \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} \). The matrix \(Q_n(a,b) \) displays a similar property on the sequence \(U_{n+1} = aU_n + bU_{n-1} \), that is, any \(e \)-th power of \(Q_n(a,b) \) multiplied by a fixed vector gives an \(n \)-tuple of consecutive terms of the sequence \(U = (U_k)_k \). We refer to [10, 3] for more details.
2 Spectra of R_n and $Q_n(a,b)$

In [8], the authors proposed a conjecture on the eigenvalues, which was proven independently in [1] and the unpublished manuscript [11]. In this section we give the proof of the conjecture from [11] and we find the eigenvectors of R_n. In [8, 10], it was shown that the inverse of R_n is the matrix

$$R_n^{-1} = \left((-1)^{n+i+j+1} \binom{n-i}{j-1}\right)_{1 \leq i,j \leq n},$$

and, in general, the inverse of $Q_n(a,b)$ is

$$Q_n^{-1}(a,b) = \left((-1)^{n+i+j+1} a^{n+1-i-j} b^{i-n} \binom{n-i}{j-1}\right)_{1 \leq i,j \leq n}. \quad (9)$$

We define K_n to be the matrix with (i,j)-entry $\delta_{i,n} - j + 1$ (the Kronecker symbol), that is, K_n is a permutation matrix having 1 on the secondary diagonal and 0 elsewhere.

Theorem 2. Let $\phi = \frac{1+\sqrt{5}}{2}, \bar{\phi} = \frac{1-\sqrt{5}}{2}$ be the golden section and its conjugate. The eigenvalues of R_n are:

1. $\{-(-1)^k \phi^{i-j+1}, (-1)^k \bar{\phi}^{i-j+1}\}_{i=1,\ldots,k}$, if $n = 2k$.
2. $\{-(-1)^k\} \cup \{-(-1)^{k+1} \phi^{i-j+1}, (-1)^{k+1} \bar{\phi}^{i-j+1}\}_{i=1,\ldots,k}$, if $n = 2k + 1$.

Equivalently, the eigenvalues of R_n are $\phi^n, \phi^{n-1}\bar{\phi}, \ldots, \phi\bar{\phi}^{n-1}, \bar{\phi}^n$.

Proof. First, we show that R_n is a permutation matrix away from L_n, namely

$$R_n \cdot K_n = L_n \iff R_n = L_n \cdot K_n. \quad (10)$$

It is a trivial matter to prove $K_n^2 = I_n$, which will give the equivalence. It suffices to show the second identity, which follows easily, since an entry in $L_n \cdot K_n$ is

$$\sum_{k=1}^{n} \binom{i-1}{k-1} \delta_{k,n-j+1} = \binom{i-1}{n-j}.$$

Now, denote by A_n, the matrix obtained by taking absolute values of entries of R_n^{-1}. We show that R_n has the same characteristic polynomial (eigenvalues) as A_n, namely we prove their similarity,

$$K_n \cdot R_n \cdot K_n = A_n. \quad (11)$$

Since $K_n \cdot R_n \cdot K_n = K_n \cdot L_n$ (by (10)), to show (11) it suffices to prove that $K_n \cdot L_n = \left(\binom{n-i}{j-1}\right)_{i,j}$. Therefore, we need

$$\sum_{k=1}^{n} \delta_{k,n-k+1} \binom{k-1}{j-1} = \binom{n-i}{j-1},$$

which is certainly true.
We use a result of [7] to show that A_n in turn is similar to D_n, the diagonal matrix whose diagonal entries are the elements in the eigenvalues set listed in decreasing order according to size of the absolute value. For instance, for $n = 4$,

$$D_4 = \begin{pmatrix}
\alpha^3 & 0 & 0 & 0 \\
0 & -\alpha & 0 & 0 \\
0 & 0 & -\beta & 0 \\
0 & 0 & 0 & \beta^3
\end{pmatrix}$$

Our claim will be proved if one can show that A_n is similar to D_n, and this will follow from [7]. We sketch here that argument for the convenience of the reader. Define an array $b_{n,m}$ by

$$b_{n,0} = 1 \text{ for all } n \geq 0$$
$$b_{n,m} = 0 \text{ for all } m > n$$
$$b_{n,m} = b_{n-1,m-1}(-1)^m \frac{F_n}{F_m} \text{ for all } m \leq n$$

Certainly, $|b_{n,m}| = \frac{F_nF_{n-1} \ldots F_{n-m+1}}{F_m \ldots F_1}$. Let $C_n = (c_{i,j})_{i,j}$, where

\[
\begin{cases}
 c_{i,i+1} = 1 & \text{if } i = 1, \ldots, n-1 \\
 c_{n,j} = -b_{n,n+1-j} & \text{if } j = 1, \ldots, n \\
 c_{i,j} = 0 & \text{otherwise}.
\end{cases}
\]

We observe that, in fact, C_n is the companion matrix of the polynomial with coefficients $b_{n,n+1-j}$. Let X_n be the matrix with entries $\binom{n-i}{j-1}F_{i-1}^{j-1}F_{i-2}^{j-2} \ldots F_{i-j+1}^{j-1}F_i^{j-1}$. It turns out that the eigenvector matrix E_n of A_n, with columns vectors listed in decreasing order of absolute value of the corresponding eigenvalues, normalized so that the last row is made up of all 1’s, satisfies

$$X_nE_n = V_n,$$

where V_n is the Vandermonde matrix, which is the eigenvector matrix of C_n with eigenvectors listed in decreasing order of the absolute values of the corresponding eigenvalues. Also,

$$X_nA_nX_n^{-1} = C_n \text{ and } E_n^{-1}A_nE_n = D_n.$$

Our theorem follows.

Easily we deduce

Corollary 3. The eigenvectors matrix of R_n, say W_n, with eigenvectors listed in decreasing order of the absolute values of the corresponding eigenvalues, is

$$W_n = K_nE_n = K_nX_n^{-1}V_n.$$

Proof. We showed that $K_nR_nK_n = A_n$ and $E_n^{-1}A_nE_n = D_n$. It follows that $(E_n^{-1}K_n)R_n(K_nE_n) = D_n$, which together with $X_nE_n = V_n$, proves the corollary.
Example 4. For $n = 4$, the eigenvectors matrix is

$$W_4 = \begin{pmatrix} -\alpha^3 & \alpha & \beta & -\beta^3 \\ \alpha^2 & -\frac{1}{3}\beta & -\frac{1}{3}\alpha & \beta^2 \\ -\alpha & -\frac{1}{3}\alpha^2 & -\frac{1}{3}\beta^2 & -\beta \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

We present below the first few characteristic polynomials of $Q_n(a,b)$ (for $1 \leq n \leq 7$) and we ask whether one can find their roots as in Theorem 2:

$$x^2 - ax - b;$$

$$-(b + x)(xa^2 + bx^2 - 2bx);$$

$$(b^3 - axb - x^2)(xa^3 + 3bx^2 - x^2);$$

$$(b^2 - x)(-xa^4 - 4axb^2 + bx^2 + x^2 - 2bx)(bx^4 + 2xb^2 + a^2xb + x^2);$$

$$-(b^5 - 3axb^2 - a^3xb - x^2)(bx^5 + 5bx^3 + 5b^2xa + b^5 - x^2).$$

The argument that proves the next theorem is similar to the proof of Theorem 2, and so, we omit it. One can also find two different ways to see its proof in [3] and [4].

Theorem 5. Let $\lambda = \frac{a+\sqrt{a^2+4b}}{2}, \bar{\lambda} = \frac{a-\sqrt{a^2+4b}}{2}$ be the roots of the polynomial $x^2 - ax - b$. The eigenvalues of $Q_n(a,b)$ are:

1. $\{(-b)^{k-i}\lambda^{2i-1}, (-b)^{k-i}\bar{\lambda}^{2i-1}\}_{i=1,...,k}$, if $n = 2k$.
2. $\{(-b)^{k}\} \cup \{(-b)^{k-i}\lambda^{2i}, (-b)^{k-i}\bar{\lambda}^{2i}\}_{i=1,...,k}$, if $n = 2k + 1$. Equivalently, the eigenvalues of $Q_n(a,b)$ can also be written in the following compact form $\lambda^n, \lambda^{n-1}\bar{\lambda}, \ldots, \lambda\bar{\lambda}^{n-1}, \bar{\lambda}^n$.

Since $R_n, Q_n(a,b)$ are column justified triangular matrices, the determinants of our matrices are easy to compute, or we can use the previous result.

Corollary 6. We have $\det(R_n) = (-1)^{\lfloor n/2 \rfloor}$ and $\det(Q_n(a,b)) = (-1)^{\lfloor n/2 \rfloor}b^{n(n-1)/2}$.

3 Arithmetic progressions and spectra of other combinatorial matrices

Let the sequences $\{u_n\}, \{v_n\}$ be defined by

$$u_n = au_{n-1} + bu_{n-2}$$

$$v_n = av_{n-1} + bv_{n-2},$$

for $n > 1$, where $u_0 = 0, u_1 = 1$, and $v_0 = 2, v_1 = a$, respectively. Let α, β be the roots of the associated equation $x^2 - ax - b = 0$. The next lemma appears in [6].

Lemma 7. For $k \geq 1$ and $n > 1$,

$$u_{kn} = v_ku_{k(n-1)} + (-1)^{k+1}b^k u_{k(n-2)}$$

$$v_{kn} = v_kv_{k(n-1)} + (-1)^{k+1}b^k v_{k(n-2)}.$$
Using the sequence v_k, we define the $n \times n$ matrix $H_n(v_k, b^k)$ as follows:

$$H_n(v_k, b^k) = \left(v_k^{i+j-n-1} \left((-b)^k \right)^{n-j} \binom{i-1}{n-j} \right)_{1 \leq i,j \leq n}.$$

Observe that $H_n(v_1, b^1) = Q_n(a, b)$.

As an example,

$$H_6(v_k, b^k) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -b^k v_k \\
0 & 0 & (-b)^3 v_k & b^{2k} v_k & -2(-b)^k v_k & v_k^2 \\
0 & b^4 v_k & -4(-b)^3 v_k & 3b^{2k} v_k & -3(-b)^k v_k & v_k^3 \\
(-b)^5 v_k & 5b^4 v_k & -10(-b)^3 v_k & 6b^{2k} v_k & -4(-b)^k v_k & v_k^4 \\
& & & & & -5(-b)^k v_k^4 & v_k^5
\end{pmatrix}.
$$

As in equation (9), we can easily find the inverse of the matrix H_n, namely

$$H_n^{-1}(v_k, b^k) = \left((-1)^{j+1}(-b)^{-k(n-i)} v_k v_{n+1-i-j} \binom{n-i}{j-1} \right)_{i,j}.
$$

It is well known that for $n \geq -1,$

$$u_{n+1} = \sum_r \binom{r}{n-r} a^{2r-n} b^{n-r}. \quad (13)$$

We generalize this identity next.

Lemma 8. For $k > 0$ and $n \geq -1,$

$$\frac{u_{k(n+1)}}{u_k} = \sum_r \binom{r}{n-r} a^{2r-n} (-(-b)^k)^{n-r}.
$$

Proof. (Induction on n) If $n = 1$, then equations (12) and (13) give the identity. Suppose that the result is true for $n - 1$ and n. Then

$$u_{k(n+1)} = v_k u_{kn} + (-b)^{k+1} u_{k(n-1)} = v_k \sum_r \binom{r}{n-1-r} a^{2r-n+1} \left((-b)^k \right)^{n-1-r} - (-b)^k \sum_r \binom{r}{n-2-r} a^{2r-n+2} \left((-b)^k \right)^{n-2-r} = \sum_r \binom{r}{n-1-r} + \binom{r}{n-2-r} a^{2r-n+2} \left((-b)^k \right)^{n-1-r} = \sum_r \binom{r+1}{n-1-r} a^{2r-n+2} \left((-b)^k \right)^{n-1-r} = \sum_r \binom{r}{n-r} a^{2r-n} \left((-b)^k \right)^{n-r}.
$$
Lemma 9. Let $k, m > 0$ and $0 \leq r \leq n$. Then

$$
\left(\frac{u_{km} x - (-b)^m u_{(k-1)m}}{u_m} \right)^r \left(\frac{u_{(k+1)m} x - (-b)^m u_{km}}{u_m} \right)^{n-r} = \sum_{r_1, r_2, \ldots, r_k} \left(\frac{n - r}{r_1} \right) \left(\frac{n - r_1}{r_2} \right) \cdots \left(\frac{n - r_{k-1}}{r_k} \right) \times v_m^{kn-r-2r_1-\cdots-2r_{k-1}-r_k} (-(-b)^m)^{r_1+r_2+\cdots+r_k} x^{n-r_k}.
$$

(14)

Proof. (Induction on k) For $k = 1$, the proof follows from $u_{2n} = u_n v_n$ and

$$
x^r (v_m x - (-b)^m)^{n-r} = \sum_s \binom{n-r}{s} v_m^{n-r-s} (-(-b)^m)^s x^{n-s}
$$

(see [3]). We assume that the equality holds for some positive integer k. If we replace $(v_m x - (-b)^m x^{-1})$ by x and then multiply by x^n, the left side of this equation becomes

$$
\left(\frac{u_{(k+1)m} x - (-b)^m u_{km}}{u_m} \right)^r \left(\frac{u_{(k+2)m} x - (-b)^m u_{(k+1)m}}{u_m} \right)^{n-r}.
$$

After some simplifications, if we expand the right side of this equation, then we get

$$
\sum_{r_1, r_2, \ldots, r_{k+1}} \left(\frac{n - r}{r_1} \right) \left(\frac{n - r_1}{r_2} \right) \cdots \left(\frac{n - r_{k+1}}{r_{k+1}} \right) \times v_m^{k(n+1)-r-2r_1-\cdots-2r_{k+1}} (-(-b)^m)^{r_1+r_2+\cdots+r_{k+1}} x^{n-r_{k+1}}.
$$

The proof is complete. \[\blacksquare \]

Lemma 10. For all $m > 0$,

$$
\text{tr} \left(H_n^m \left(v_k, b^k \right) \right) = \frac{u_{km}}{u_k}.
$$

Proof. If we multiply both sides of the equation (14) by x^r and summing over r, we get

$$
\sum_{r=0}^{n} \left(\frac{u_{km} x - (-b)^m u_{(k-1)m}}{u_m} \right)^r \left(\frac{u_{(k+1)m} x - (-b)^m u_{km}}{u_m} \right)^{n-r} x^r = \sum_{r_1, r_2, \ldots, r_k} \left(\frac{n - r}{r_1} \right) \left(\frac{n - r_1}{r_2} \right) \cdots \left(\frac{n - r_{k-1}}{r_k} \right) \times v_m^{kn-r-2r_1-\cdots-2r_{k-1}-r_k} (-(-b)^m)^{r_1+r_2+\cdots+r_k} x^{n-r_k},
$$

where the coefficient of x^n on the right side is $\text{tr} \left(H_n^m \left(v_k, b^k \right) \right)$. The coefficient of x^n on the left side of this equation without its denominator is

$$
\sum_{r+s+t=n} \left(\frac{v}{s} \right) \left(\frac{n - r}{t} \right) u_{km}^s (-(-b)^m u_{(k-1)m})^{r-s} u_{(k+1)m}^t (-(-b)^m u_{km})^s
$$

$$
= \sum_{r+s \leq n} \left(\frac{v}{s} \right) \left(\frac{n - r}{s} \right) u_{km}^s (-(-b)^m u_{(k-1)m})^{r-s} u_{(k+1)m}^t (-(-b)^m u_{km})^s.
$$
For easy writing, denote this last expression by c_n. Then

$$
\sum_{n=0}^{\infty} c_n x^n = \sum_{r,s=0}^{\infty} \binom{r}{s} (-b)^r u^{r-s}_{(k-1)m} u^{s}_{km} x^{r+s} \sum_{n=r+s}^{\infty} \binom{n-r}{s} (u_{(k+1)m} x)^{n-r-s} \\
= \sum_{r,s=0}^{\infty} \binom{r}{s} (-b)^r u^{r-s}_{(k-1)m} u^{s}_{km} x^{r+s} (1 - u_{(k+1)m} x)^{-s-1} \\
= \sum_{s=0}^{\infty} (-b)^s u^{2s}_{km} x^{2s} (1 - u_{(k+1)m} x)^{-s-1} \sum_{r \geq s} \binom{r}{s} ((-b)^r u_{(k-1)m} x)^{r-s} \\
= \sum_{s=0}^{\infty} (-b)^s u^{2s}_{km} x^{2s} (1 - u_{(k+1)m} x)^{-s-1} (1 + (-b)^m u_{(k-1)m} x)^{-s-1} \\
= \frac{1}{(1 - u_{(k+1)m} x) (1 + (-b)^m u_{(k-1)m} x) (1 - u^{2s}_{km} x^2) (1 + (-b)^m u_{(k-1)m} x)^{-s-1}} \\
= \frac{1}{(1 - u_{(k+1)m} x) (1 + (-b)^m u_{(k-1)m} x) + (-b)^m u^{2s}_{km} x^2}.
$$

Here by the Binet formula for $\{u_n\}$, we note that for all integers $k > 0$,

$$
\frac{u_{kn} - (-b)^k u_{k(n-2)}}{u_k} = v_{k(n-1)}
$$

(16)

and

$$
-\left(\frac{u_{kn} u_{k(n-2)} - u_{k(n-1)}^2}{u_k^2}\right) = (-b)^k(n-2).
$$

(17)

Using (16) and (17), we write the right side of the equation (15) as

$$
\frac{1}{(1 - u_{(k+1)m} x) (1 + (-b)^m u_{(k-1)m} x) + (-b)^m u^{2s}_{km} x^2} = \frac{1}{1 - v_{mk} x + (-b)^{mk} x^2}.
$$

Thus, $c_n = \frac{u_{kn} u_{k(n-1)}}{u_k}$, and so, $\text{tr} \left(H_m^n \left(v_k, b^k \right) \right) = \frac{u_{km} u_{k(n-1)}}{u_k}$. The proof is complete.

Theorem 11. The eigenvalues of $H_m^n \left(v_k, b^k \right)$ are

$$
\alpha^{kn}, \alpha^{k(n-1)} \beta_k, \ldots, \alpha^{k} \beta^{k(n-1)}, \beta^{kn}.
$$
Proof. Let \(f_n(x) = \det(xI - H_n(v_k, b^k)) \) and \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \) denote the eigenvalues of \(H_n(v_k, b^k) \). Then by Lemma 10,

\[
\frac{f'_n(x)}{f_n(x)} = \sum_{j=0}^{n-1} \frac{1}{x - \lambda_j} = \sum_{m=0}^{n-1} x^{-m-1} \sum_{j=0}^{m} \lambda_j^m
\]

\[
= \sum_{k=0}^{\infty} x^{-k-1} \text{tr}(H_{n-1}^m(v_k, b^k))
\]

\[
= \sum_{m=0}^{\infty} x^{-m-1} \frac{u_{k(n-1)m}}{u_k}
\]

\[
= \sum_{m=0}^{\infty} x^{-m-1} \sum_{j=0}^{n-1} \alpha^{km} \beta^{k(n-j-1)m}
\]

\[
= \sum_{j=0}^{n-1} \frac{1}{x - \alpha^j \beta^{k(n-j-1)}k}.
\]

Thus

\[
f_n(x) = \prod_{j=0}^{n-1} \left(x - \alpha^j \beta^{k(n-j-1)}k\right)
\]

and so the eigenvalues of \(H_n(v_k, b^k) \) are

\[
\alpha^{k(n-1)} k, \alpha^{k(n-2)} \beta^k, \ldots, \alpha^k \beta^{k(n-2)} k, \beta^{k(n-1)} k.
\]

Next, we give an expression of the characteristic polynomial of \(H_n \) in terms of Gaussian binomials. Fix \(k \) and let \(r_n := u_{kn} \). Define the \(k \)-Fibonomial coefficients by

\[
\left\{ \frac{n}{m} \right\}_{u,k} = \frac{r_1 r_2 \ldots r_n}{(r_1 r_2 \ldots r_m) (r_1 r_2 \ldots r_{n-m})},
\]

where \(\left\{ \frac{n}{m} \right\}_{u,k} = \left\{ \frac{n}{0} \right\}_{u,k} = 1. \)

Clearly, when \(k = 1 \), then \(\left\{ \frac{n}{m} \right\}_{u,k} \) is reduced to the Fibonomial coefficient \(\left(\frac{n}{m} \right) \).

Theorem 12.

\[
f_n(x) = \prod_{j=0}^{n-1} \left(x - \alpha^j \beta^{k(n-j-1)}k\right) = \sum_{i=0}^{n} (-1)^i (-b)^{k(i+1)/2} \left\{ \frac{n}{i} \right\}_{u,k} x^{n-i}.
\]

Proof. Here we can use the following familiar identity

\[
\prod_{j=0}^{n-1} (1 - q^j x) = \sum_{i=0}^{n} (-1)^i q^{(i-1)/2} \left[\frac{n}{i} \right]_q x^i,
\]

(18)
where
\[
\binom{n}{i}_q = \frac{(1 - q^n) \cdots (1 - q^{n-i+1})}{(1 - q^i) \cdots (1 - q)} ,
\]
are the usual \(q\)-binomial coefficients (Gaussian binomials).

If we replace \(q\) by \((\beta/\alpha)^k\) we find that for all positive fixed integers \(k\),
\[
\binom{n}{i}_q \rightarrow \alpha^{ki(n-i)} \binom{n}{i}_{u,k}.
\]
Thus (18) becomes
\[
\prod_{j=0}^{n-1} \left(1 - (\alpha^{-1} \beta)^{kj} x\right) = \sum_{i=0}^{n} (-1)^i \beta^{ki(i-1)/2} \alpha^{ki(i+1)/2 - nki} \binom{n}{i}_{u,k} x^i.
\]
Replacing \(x\) by \(\alpha^{k(n-1)} x\), we get
\[
\prod_{j=0}^{n-1} \left(1 - \alpha^{(n-j-1)k \beta^{kj}} x\right) = \sum_{i=0}^{n} (-1)^i \beta^{ki(i-1)/2} \binom{n}{i}_{u,k} x^i
\]
\[
= \sum_{i=0}^{n} (-1)^i (-b)^{ki(i-1)/2} \binom{n}{i}_{u,k} x^i.
\]
Finally replacing \(x\) by \(x^{-1}\) gives us
\[
\prod_{j=0}^{n-1} \left(1 - \alpha^{(n-j-1)k \beta^{kj}} x\right) = \sum_{i=0}^{n} (-1)^i (-b)^{ki(i-1)/2} \binom{n}{i}_{u,k} x^{n-i}.
\]

Acknowledgements. The authors would like to thank the referee for constructive comments, which improved the presentation of the paper. The third author acknowledges NPS Foundation and NPS–RIP funding support from Naval Postgraduate School.

References

