The generalized Fibonomial matrix

Emrah Kiliç
TOBB University of Economics and Technology, Mathematics Department, 06560 Ankara, Turkey

 ARTICLE INFO

Article history:
Received 14 August 2008
Accepted 16 March 2009
Available online 15 May 2009

ABSTRACT

The Fibonomial coefficients are known as interesting generalizations of binomial coefficients. In this paper, we derive a \((k+1)\)th recurrence relation and generating matrix for the Fibonomial coefficients, which we call generalized Fibonomial matrix. We find a nice relationship between the eigenvalues of the Fibonomial matrix and the generalized right-adjusted Pascal matrix; that they have the same eigenvalues. We obtain generating functions, combinatorial representations, many new interesting identities and properties of the Fibonomial coefficients. Some applications are also given as examples.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The well known Fibonacci numbers are defined by

\[F_n = F_{n-1} + F_{n-2} \]

with initial conditions \(F_0 = 0 \) and \(F_1 = 1 \), for \(n > 1 \).

The Fibonomial coefficient is defined by the relation for \(n \geq m \geq 1 \)

\[\binom{n}{m}_F = \frac{F_1F_2\ldots F_n}{(F_1F_2\ldots F_{n-m})(F_1F_2\ldots F_m)} \]

with \(\binom{n}{0}_F = \binom{n}{n}_F = 1 \) where \(F_n \) is the \(n \)th Fibonacci number. These coefficients satisfy the relation:

\[\binom{n}{m}_F = F_{m+1}\binom{n-1}{m}_F + F_{n-m-1}\binom{n-1}{m-1}_F \]

Let \(p \) be a nonzero integer. Define the generalized Fibonacci and Lucas sequences by the recurrences:

\[u_n = pu_{n-1} + u_{n-2} \]
\[v_n = pv_{n-1} + v_{n-2} \]

where \(u_0 = 0, u_1 = 1 \) and \(v_0 = 2, v_1 = p \), respectively, for all \(n \geq 2 \).

E-mail address: ekilic@etu.edu.tr.

0195-6698/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2009.03.041
When \(p = 1 \) and \(p = 2 \), \(u_n = F_n \) (n-th Fibonacci number) and \(u_n = P_n \) (n-th Pell number), respectively.

Jarden and Motzkin [13] were the first to study generalized Fibonomial coefficients formed by terms of sequence \(\{u_n\} \) as follows: for \(n \geq m \geq 1 \)

\[
\begin{bmatrix} n \\ m \end{bmatrix} = \frac{u_1u_2 \ldots u_n}{(u_1u_2 \ldots u_{n-m})(u_1u_2 \ldots u_m)}
\]

with \(\begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} n \end{bmatrix} = 1 \). When \(p = 1 \), the generalized Fibonomial coefficient \(\begin{bmatrix} n \\ m \end{bmatrix} \) is reduced to the Fibonomial coefficient \(\begin{bmatrix} n \\ m \end{bmatrix}_F \).

The \(n \times n \) generalized Pascal matrix \(P_n \) whose \((i,j)\) entry is given by

\[
(P_n)_{ij} = \binom{j - 1}{j + i - n - 1} p^{i+j-n-1}.
\]

For example,

\[
P_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3p \end{bmatrix}.
\]

Recently there has been increasing interest in both the Fibonomial coefficients and certain generalized matrix of binomial coefficients, which we call generalized Pascal matrices. Regarding left or right adjustments, and certain coefficients generalizations, several authors give various names to Pascal matrices. For example Carlitz [1] considered the right adjusted Pascal matrix and he called it a “matrix of binomial coefficients”. In [5], Edelman and Gilbert considered left adjusted matrix of binomial coefficients and he called it a “Pascal matrix”. In [21], the author considered right adjusted and coefficient generalized matrix of binomial coefficient and he called it a “Netted Matrix”.

Regarding generalization of binomial coefficients, several authors have studied the generalized Fibonomial coefficients and their properties (for more details see [7,9,13,19,23,24]). Meanwhile, some authors have considered the spectral properties of the generalized Pascal matrix [1,3,10,20]. Since some relationships between the generalized Pascal matrix and the Fibonomial coefficients have been constructed, the Fibonomial coefficients have been considered by some authors. In this paper, we give more powerful relationships between the Fibonomial coefficients and a right-adjusted generalized Pascal matrix.

Matrix methods and generating matrices are very useful for solving some problems stemming from number theory. In this paper, we define the generalized Fibonomial matrix and derive an \((k+1)\)th order linear recurrence relation for the generalized Fibonacci coefficients. Also, we show that the generalized Fibonomial and Pascal matrices have the same characteristic polynomials and therefore the same eigenvalues. We obtain some explicit and closed formulas for the coefficients and their sums by matrix methods. We give generating functions, properties and combinatorial representations for them. Further, we present some relationships between determinants of certain matrices and the generalized Fibonacci coefficients.

2. Generalized Fibonomial coefficients

This section is mainly devoted to deriving a recurrence relation and generating matrix for the generalized Fibonomial coefficients. For the sake of compactness, we shall use the following notations, for fixed \(k \) such that \(1 \leq i \leq k + 1 \):

\[
a_{n,i} = (-1)^{i(i-1)(i-2)/2} \begin{bmatrix} n + k \\ k + i - 1 \end{bmatrix} \begin{bmatrix} n + i - 2 \\ i - 1 \end{bmatrix}
\]

where \(\begin{bmatrix} n \\ m \end{bmatrix} \) stands for the generalized Fibonomial coefficients and is defined by

\[
\begin{bmatrix} n \\ m \end{bmatrix} = \begin{cases} 0 & \text{if } m > n \text{ and } n \geq 0, \\ (-1)^{m(m-1)/2} \frac{u_1u_2 \ldots u_n}{(u_1u_2 \ldots u_m)(u_1u_2 \ldots u_{n-m})} & \text{if } m > n \text{ and } n < 0, \\ \frac{u_1u_2 \ldots u_n}{(u_1u_2 \ldots u_m)(u_1u_2 \ldots u_{n-m})} & \text{if } m \leq n. \\ \end{cases}
\]
For all n, the generalized Fibonacci coefficients and their properties were studied in [15].

For later use, we give the following useful result.

Lemma 1. For $n > 0$ and $1 \leq i \leq k$

$$a_{1,i}a_{n,1} + a_{n,i+1} = a_{n+1,i}$$

where $a_{n,i}$ be as before.

Proof. For case $i = 1$, the proof can be found in [9]. For the other cases, that is, $i > 1$, if we simplify the equality $a_{1,i}a_{n,1} + a_{n,i+1} = a_{n+1,i}$, it is reduced to the form:

$$u_{k+1}u_{n+i} + (-1)^{i-1}u_{k}u_{k-i+1} = u_{i}u_{n+k+1}.$$

The last equality can be easily obtained from the Binet formula of $\{u_{n}\}$. Thus the proof follows.

For $k \geq 1$, define the $(k+1) \times (k+1)$ companion matrix G_{k} and the matrix $H_{n,k}$ as follows:

$$G_{k} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,k+1} \\ & 1 & \cdots & \vdots \\ & \vdots & \ddots & \vdots \\ 0 & \cdots & & 1 \end{bmatrix} \quad \text{and} \quad H_{n,k} = \begin{bmatrix} a_{n,1} & a_{n,2} & \cdots & a_{n,k+1} \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-k,1} & a_{n-k,2} & \cdots & a_{n-k,k+1} \end{bmatrix}.$$

(1)

The matrix G_{k} is said to be **generalized Fibonacci matrix**. Now we give our main result as follows:

Theorem 2. For all $n > 0$,

$$G_{k}^{n} = H_{n,k}.$$

Proof. By the definitions of matrix $H_{n,k}$ and Fibonacci coefficients, the proof is obvious for $n = 1$. Suppose that the equation holds for $n \geq 1$. Now we show that the equation holds for $n + 1$. Thus we write

$$G_{k}^{n+1} = G_{k}G_{k}^{n} = G_{k}H_{n,k}.$$

From Lemma 1 and the property of matrix multiplication, we get

$$G_{k}^{n+1} = G_{k}H_{n,k} = H_{n+1,k}.$$

Thus the proof of the theorem is complete.

It is valuable to note that when $p = 1$ and $k = 1$, we obtain the well-known fact:

$$G_{1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad H_{n,1} = \begin{bmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{bmatrix}.$$

Now we give a linear recurrence relation for the generalized Fibonacci coefficients.

Corollary 3. For $n, k > 0$, the generalized Fibonacci coefficients satisfy the following order-$(k + 1)$ linear recurrence relation

$$a_{n+1,1} = \sum_{i=1}^{k+1} a_{1,i}a_{n-i+1,1}.$$

or clearly

$$\binom{n+k+1}{k} = \binom{k+1}{k}\binom{n+k}{k} + \binom{k+1}{k-1}\binom{n+k-1}{k} + \cdots + (-1)^{(k-1)(k-2)/2}\binom{k+1}{1}\binom{n+1}{k} + (-1)^{(k-1)/2}\binom{n}{k}.$$
Since \(n \geq F_{n+1} \) is defined as before, Moreover in [4], the authors proved the conjecture of Horadam and Mahon, and they gave a very nice relationship between the characteristic polynomials of the matrix for generalized Fibonomial coefficients and the generalized Pascal matrix \(P_n \). Let \(R_n(x) \) be the characteristic polynomial of matrix \(P_n \). From [4], we have that

\[
C_n(x) = R_n(x).
\]

Therefore we derive a nice relationship between the characteristic polynomials of matrix \(G_k \) and the polynomial of \(P_n \) as follows:

\[
f_{1,n-1}(x) = C_n(x) = R_n(x).
\]

We have the following result.
Corollary 6 ([4]). Let \(\alpha, \beta = \left(p \pm \sqrt{p^2 + 4} \right) / 2 \). The characteristic roots of \(C_{m+1}(x) = f_{1,m}(x) \) are:

\[
\begin{align*}
&\{(-1)^{j} \alpha^{m-2j}, (-1)^{j} \beta^{m-2j}\}_{j=0,1,...,k-1} \text{ if } m = 2k - 1, \\
&\{(-1)^{k}, (-1)^{j} \alpha^{m-2j}, (-1)^{j} \beta^{m-2j}\}_{j=0,1,...,k-1} \text{ if } m = 2k.
\end{align*}
\]

As an example, when \(k = 5 \), after some simplifications, we write

\[
G_5 = \begin{bmatrix}
a_1 & b_1 & -c_1 & -d_1 & e_1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

and

\[
H_{n,5} = \begin{bmatrix}
a_n & b_n & -c_n & -d_n & e_n & a_{n-1} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

where \(a_n = \binom{n+5}{5} \), \(b_n = \binom{n+5}{4} \), \(c_n = \binom{n+5}{3} \), \(d_n = \binom{n+5}{2} \), \(e_n = \binom{n+5}{1} \).

The characteristic polynomial and its roots of \(G_5 \) are given by

\[
f_{1,5}(x) = \sum_{i=0}^{6} (-1)^{i(i+1)/2} \binom{6}{i} x^{6-i}
\]

and \(\lambda_6 = \alpha^5, \lambda_5 = \beta^5, \lambda_4 = -\alpha^3, \lambda_3 = -\beta^3, \lambda_2 = \alpha, \lambda_1 = \beta \) where \(\alpha, \beta = \left(p \pm \sqrt{p^2 + 4} \right) / 2 \).

Thus we have the following result.

Corollary 7. For \(k > 0 \),

\[
\prod_{i=1}^{k+1} (x - \lambda_i) = \sum_{i=0}^{k+1} (-1)^{i(i+1)/2} \binom{k+1}{i} x^{k+1-i}.
\]

Considering the results of Corollary 6, we derive the following facts:

\[
\begin{align*}
f_{1,4m+4}(x) &= (x^4 - c_{4m}x^3 - d_{4m}x^2 - c_{4m}x + 1)f_{1,4m}, \\
f_{1,4m+5}(x) &= (x^4 - c_{4m+1}x^3 - d_{4m+1}x^2 + c_{4m+1}x + 1)f_{1,4m+1}, \\
f_{1,4m+6}(x) &= (x^4 - c_{4m+2}x^3 - d_{4m+2}x^2 - c_{4m+2}x + 1)f_{1,4m+2}, \\
f_{1,4m+7}(x) &= (x^4 - c_{4m+3}x^3 - d_{4m+3}x^2 + c_{4m+3}x + 1)f_{1,4m+3}.
\end{align*}
\]

In general, we obtain the following identity:

\[
f_{1,t+4}(x) = (x^4 - c_{t}x^3 - d_{t}x^2 + (-1)^{t+1}c_{t}x + 1)f_{1,t}
\]

where \(c_{t} = v_{t+4} - v_{t+2} \) and \(d_{t} = v_{t+4}v_{t+2} + (-1)^{t+1}2 \).

Rearranging the right-hand-side of (2) and equating the corresponding coefficients of \(x^n \), gives the following new result:
Corollary 8. For all \(t \geq j \),
\[
\begin{pmatrix} t+5 \\ i \end{pmatrix} = \begin{pmatrix} t+1 \\ i \end{pmatrix} + (-1)^{j+1}c_t \begin{pmatrix} t+1 \\ i-1 \end{pmatrix} + d_t \begin{pmatrix} t+1 \\ i-2 \end{pmatrix} + (-1)^{j+t}c_t \begin{pmatrix} t+1 \\ i-3 \end{pmatrix} + \begin{pmatrix} t+1 \\ i-4 \end{pmatrix}
\]
where \(c_t \) and \(d_t \) are defined as before.

Proof. From (2), we write
\[
f_{1,t+4}(x) = (x^4 - c_t x^3 - d_t x^2 + (-1)^{t+4} c_t x + 1) f_{1,t}
\]
\[
= x^{t+5} - x^{t+4} \left(\begin{pmatrix} t+1 \\ 1 \end{pmatrix} + c_t \begin{pmatrix} t+1 \\ 0 \end{pmatrix} \right)
\]
\[
- x^{t+3} \left(\begin{pmatrix} t+1 \\ 2 \end{pmatrix} - c_t \begin{pmatrix} t+1 \\ 1 \end{pmatrix} + d_t \begin{pmatrix} t+1 \\ 0 \end{pmatrix} \right)
\]
\[
+ x^{t+2} \left(\begin{pmatrix} t+1 \\ 3 \end{pmatrix} + c_t \begin{pmatrix} t+1 \\ 2 \end{pmatrix} + d_t \begin{pmatrix} t+1 \\ 1 \end{pmatrix} - c_t \begin{pmatrix} t+1 \\ 0 \end{pmatrix} \right)
\]
\[
+ x^{t+1} \left(\begin{pmatrix} t+1 \\ 4 \end{pmatrix} - c_t \begin{pmatrix} t+1 \\ 3 \end{pmatrix} + d_t \begin{pmatrix} t+1 \\ 2 \end{pmatrix} + c_t \begin{pmatrix} t+1 \\ 1 \end{pmatrix} + \begin{pmatrix} t+1 \\ 0 \end{pmatrix} \right)
\]
\[
- x^t \left(\begin{pmatrix} t+1 \\ 5 \end{pmatrix} + c_t \begin{pmatrix} t+1 \\ 4 \end{pmatrix} + d_t \begin{pmatrix} t+1 \\ 3 \end{pmatrix} - c_t \begin{pmatrix} t+1 \\ 2 \end{pmatrix} + \begin{pmatrix} t+1 \\ 1 \end{pmatrix} \right) \cdots
\]
\[
+ (-1)^{t+i+1/2} x^{t+5-i} \left(\begin{pmatrix} t+1 \\ i \end{pmatrix} + (-1)^{t+i} c_t \begin{pmatrix} t+1 \\ i-1 \end{pmatrix} \right)
\]
\[
+ d_t \begin{pmatrix} t+1 \\ i-2 \end{pmatrix} + (-1)^{j+t} c_t \begin{pmatrix} t+1 \\ i-3 \end{pmatrix} + \begin{pmatrix} t+1 \\ i-4 \end{pmatrix} \right) + \cdots + 1.
\]
Comparing the coefficients of \(x^i \) for \(1 \leq i \leq n \) above and the polynomial \(f_{1,t+4} \), the proof is complete. \(\Box \)

In [3], the authors show that
\[
\text{tr} \left(P_n \right) = \frac{u_{(k+1)n}}{u_n},
\]
where \(P_n \) is the generalized Pascal matrix.

Since the matrices \(H_{n,k} \) and \(P_n \) have the same eigenvalues, alternatively we also have that
\[
\text{tr}(H_{n,k}) = \frac{u_{(k+1)n}}{u_n}.
\]

By **Corollary 6**, we can give the following result for both the generalized Fibonomial and Pascal matrices.

Theorem 9. For \(n > 0 \),
\[
\text{tr}(H_{n,k}) = \sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^i u_{(k-2i)n} + \frac{1}{2} \left(1 + (-1)^k \right).
\]

4. **Diagonalization of** \(G_k \) **and the generalized Binet formula**

In this section, we consider diagonalization of the matrix \(G_k \) and then give the generalized Binet formula for the generalized Fibonomial coefficients. From **Corollary 6**, we know that if \(\lambda_1, \lambda_2, \ldots, \lambda_{k+1} \) are the eigenvalues of matrix \(G_k \), then they are all distinct. Thus we can diagonalize the matrix \(G_k \).
Define the \((k+1) \times (k+1)\) Vandermonde matrix \(V\) and diagonal matrix \(D = \text{diag} (\lambda_1, \lambda_2, \ldots, \lambda_{k+1})\) as shown:

\[
V = \begin{bmatrix}
\lambda_1^k & \lambda_2^k & \cdots & \lambda_{k+1}^k \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^1 & \lambda_2^1 & \cdots & \lambda_{k+1}^1 \\
1 & 1 & \cdots & 1
\end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix}
\lambda_1 & & & \\
& \lambda_2 & & \\
& & \ddots & \\
& & & \lambda_{k+1}
\end{bmatrix}.
\]

Since \(\lambda_i \neq \lambda_j\) for \(1 \leq i, j \leq k+1\), \(\det V \neq 0\).

Let \(V_j^{(i)}\) is the \((k+1) \times (k+1)\) matrix obtained from \(V^T\) by replacing the \(j\)th column of \(V\) by \(w_i\) where \(w_i = [\lambda_1^{n-i+k+1}, \lambda_2^{n-i+k+1}, \ldots, \lambda_{k+1}^{n-i+k+1}]^T\).

Recalling \(a_{n,i,j} = (-1)^{(i-1)(j-1)/2} \binom{n+k}{k-i+1} \binom{n+i-2}{i-1}\), we give the generalized Binet formulas for the generalized Fibonomial coefficients by the following theorem.

Theorem 10. For \(n, k > 0\),

\[
a_{n-i+1,j} = \frac{\det \left(V_j^{(i)} \right)}{\det(V)}.
\]

Proof. One can check that \(G_{n}V = VD\). Since \(V\) is the invertible matrix and \(G_{n}^n = H_{n,k}\), we write \(G_{k}^nV = H_{n,k}V = VD^n\). Clearly we get the following linear equation system:

\[
\begin{align*}
(h_{i1}\lambda_1^k + h_{i2}\lambda_1^{k-1} + \cdots + h_{i,k-1}\lambda_1^2 + h_{i,k}\lambda_1 + h_{i,k+1}) = \lambda_1^{n-i+k+1} \\
(h_{i1}\lambda_2^k + h_{i2}\lambda_2^{k-1} + \cdots + h_{i,k-1}\lambda_2^2 + h_{i,k}\lambda_2 + h_{i,k+1}) = \lambda_2^{n-i+k+1} \\
\vdots \\
(h_{i1}\lambda_{k+1}^k + h_{i2}\lambda_{k+1}^{k-1} + \cdots + h_{i,k-1}\lambda_{k+1}^2 + h_{i,k}\lambda_{k+1} + h_{i,k+1}) = \lambda_{k+1}^{n-i+k+1}.
\end{align*}
\]

Thus by Cramer’s Rule, we have the conclusion. \(\square\)

After some calculations, we present some identities as examples of Theorem 10.

Case 1 When \(k = 3\), \(\det(V) = -u_2^2u_3\Delta^2\) and for \(n > 0\) we have that

\[
\begin{align*}
\binom{n+2}{3} &= \left(u_{3n+3} + (-1)^{n+1}u_3u_{n+1} \right) / u_2u_3\Delta, \\
\binom{n+3}{2} &= \binom{n+1}{1} \left(u_{3n+5} + (-1)^{n+1} \left(u_2u_n + u_{n+5} \right) \right) / u_2\Delta, \\
\binom{n+3}{1} &= \binom{n+1}{2} \left(u_3u_{3n+4} + (-1)^{n+1} \left[u_2^2 \left(u_{n+4} + u_n \right) - u_{n-4} \right] \right) / u_2u_3\Delta
\end{align*}
\]

where \(\Delta = p^2 + 4\).

Especially when \(p = 1\), \(u_n = F_n\) (\(n\)th Fibonacci number) and so

\[
\begin{align*}
F_nF_{n+1}F_{n+2} &= (F_{3n+3} + 2(-1)^{n+1}F_{n+1}) / 5, \\
F_nF_{n+2}F_{n+3} &= \left[F_{3n+5} + (-1)^{n+1} \left(F_{n+5} + F_n \right) \right] / 5, \\
F_nF_{n+1}F_{n+3} &= \left[2F_{3n+4} + (-1)^{n+1} \left(F_{n+4} + L_{n-2} \right) \right] / 10.
\end{align*}
\]
Case II When \(k = 4 \), \(\det(V) = u_2^3 v_2 u_3^2 \Delta^5 \) and for \(n \geq 0 \)

\[
\begin{aligned}
\{ n + 4 \} \quad & \frac{v_{4n+6} - v_4 + v_1^2 + (-1)^{n+1} v_1 v_2 v_{2n+3}}{u_2^2 v_2 u_3 \Delta^2}, \\
\{ n + 3 \} \quad & \frac{v_{4n+9} + v_5 - v_3 + v_1 + (-1)^n (v_1 v_{2n+2} - v_{2n+5} - v_{2n+9})}{u_1 u_2 u_3 \Delta^2}, \\
\{ n + 4 \} \quad & \frac{v_{4n+8} - v_6 - v_2 + v_0 + (-1)^n (v_1 v_{2n+1} + v_{2n+6} - v_{2n+8})}{u_2^2 \Delta^2}, \\
\{ n + 4 \} \quad & \frac{v_{4n+7} - v_5 + v_3 - v_1 + (-1)^n (v_1 v_{2n+4} - v_{2n+7} - v_{2n-1})}{u_2 u_3 \Delta^2}.
\end{aligned}
\]

Case III When \(k = 5 \), \(\det(V) = u_2^3 u_3^2 u_4^2 \Delta^{15} \) and for \(n \geq 0 \)

\[
\begin{aligned}
\{ n + 4 \} \quad & \frac{u_{5n+10} + (-1)^{n+1} (u_2 u_{3n+9} + u_3 u_{3n+4}) - (u_3 (u_{n+6} + u_{n-2}) + u_4^2 u_{n+2})}{u_2 u_3 u_4 u_5 \Delta^2}, \\
\{ n + 5 \} \quad & \frac{u_{5n+14} + (-1)^{n+1} (u_{3n+14} + u_{3n+10} - u_3 u_{3n+6}) + (u_4 u_{n+7} - u_3 (u_{n+2} + u_{n-2}))}{u_2 u_3 u_4 \Delta^2}, \\
\{ n + 5 \} \quad & \frac{u_{5n+13} + (-1)^{n+1} (u_2 u_{3n+12} - u_3 u_{3n+5}) - u_{n+11} - u_2 u_3 u_{n+4} - u_3 u_{n-3}}{u_2^2 u_3 \Delta^2}, \\
\{ n + 2 \} \quad & \frac{u_{5n+12} + (-1)^{n+1} (u_3 u_{3n+10} + u_2 u_{3n+3}) - u_4 u_{n+7} - 2 u_2 u_{n+1} - u_{n-2} - u_{n-6}}{u_2^2 u_3 \Delta^2}, \\
\{ n + 5 \} \quad & \frac{u_{5n+11} + (-1)^{n+1} (u_2 (u_{3n+10} + u_{3n+6}) - u_{3n+1}) - u_3 u_{n+7} - u_3 u_{n+3} - u_4 u_{n-2}}{u_2 u_3 u_4 \Delta^2}.
\end{aligned}
\]

Let \(V_j^{(e_i)} \) be a \((k + 1) \times (k + 1)\) matrix obtained from the Vandermonde matrix \(V \) by replacing the \(j \)th column of \(V \) by \(e_i \) where \(V \) is defined as before and \(e_i \) is the \(i \)th element of the natural basis for \(\mathbb{R}^n \) and

\[
V_j^{(e_i)} = \begin{bmatrix}
\lambda_1^k & \ldots & \lambda_{j-1}^k & 0 & \lambda_{j+1}^k & \ldots & \lambda_{k+1}^k \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\lambda_1^{k-i+1} & \ldots & \lambda_{j-i}^{k-i+1} & 0 & \lambda_{j+i}^{k-i+1} & \ldots & \lambda_{k+i}^{k-i+1} \\
\lambda_1^{k-i} & \ldots & \lambda_{j-i}^{k-i} & 1 & \lambda_{j+i}^{k-i} & \ldots & \lambda_{k+i}^{k-i} \\
\lambda_1^{k-i-1} & \ldots & \lambda_{j-i-1}^{k-i-1} & 0 & \lambda_{j+i}^{k-i-1} & \ldots & \lambda_{k+i}^{k-i-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\lambda_1 & \ldots & \lambda_{j-1} & 0 & \lambda_{j+1} & \ldots & \lambda_{k+1} \\
1 & \ldots & 1 & 0 & 1 & \ldots & 1
\end{bmatrix}.
\]
Let \(q_{j}^{(i)} = \frac{|V_j^{(i)}|}{|V|} \) where the \((k+1) \times (k+1)\) matrices \(V_j^{(i)} \) and \(V \) are defined as before.

Then we give the following theorem.

Theorem 11. Let \(\lambda_1, \lambda_2, \ldots, \lambda_{k+1} \) be the distinct roots of \(x^{k+1} - a_{1,1}x^k - a_{1,2}x^{k-1} - \ldots - a_{1,k}x - a_{1,k+1} = 0 \). For any integer \(n \) and \(1 \leq i \leq k + 1 \),

\[
a_{n,i} = \sum_{j=1}^{k+1} q_{j}^{(i)} \lambda_j^{n+k}.
\]

Proof. We consider the following system of \(k \) linear equations with \(k \) unknowns \(x_1, x_2, \ldots, x_k \): for \(1 \leq i \leq k \)

\[
\lambda_1^i x_1 + \lambda_2^i x_2 + \cdots + \lambda_{k+1}^i x_{k+1} = 0
\]

\[
\vdots
\]

\[
\lambda_1^{k-i+1} x_1 + \lambda_2^{k-i+1} x_2 + \cdots + \lambda_{k+1}^{k-i+1} x_{k+1} = 0
\]

\[
\lambda_1^{k-i} x_1 + \lambda_2^{k-i} x_2 + \cdots + \lambda_{k+1}^{k-i} x_{k+1} = 1
\]

\[
\lambda_1^{k-i-1} x_1 + \lambda_2^{k-i-1} x_2 + \cdots + \lambda_{k+1}^{k-i-1} x_{k+1} = 0
\]

\[
\vdots
\]

\[
\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_{k+1} x_{k+1} = 0
\]

\[
x_1 + x_2 + \cdots + x_{k+1} = 0.
\]

By the solution of Vandermonde’s determinants and Cramer rule, we get

\[
q_{j}^{(i)} = \frac{|V_j^{(i)}|}{|V|} \quad (i = 1, 2, \ldots, k + 1).
\]

Thus for \(n, k > 0 \) and \(1 \leq i \leq k + 1 \),

\[
a_{n,i} = \sum_{j=1}^{k+1} q_{j}^{(i)} \lambda_j^{n+k},
\]

which completes the proof. \(\square \)

For example, if we take \(k = 2 \), then \(\gamma_1 = \alpha^2, \gamma_2 = \beta^2, \gamma_3 = -1 \) are the roots of \(x^3 - a_{1,1}x^2 - a_{1,2}x - a_{1,3} = 0 \). After some computations, we get

\[
q_1^{(1)} = \frac{1}{(\gamma_1 - \gamma_3)(\gamma_1 - \gamma_2)}, \quad q_2^{(1)} = \frac{1}{(\gamma_2 - \gamma_3)(\gamma_2 - \gamma_1)}, \quad q_3^{(1)} = \frac{1}{(\gamma_3 - \gamma_1)(\gamma_3 - \gamma_2)},
\]

\[
q_1^{(2)} = -\frac{\gamma_2 + \gamma_3}{(\gamma_1 - \gamma_2)(\gamma_1 - \gamma_3)}, \quad q_2^{(2)} = \frac{\gamma_1 + \gamma_3}{(\gamma_2 - \gamma_3)(\gamma_1 - \gamma_2)},
\]

\[
q_3^{(2)} = -\frac{\gamma_1 + \gamma_2}{(\gamma_2 - \gamma_3)(\gamma_1 - \gamma_3)},
\]

\[
q_1^{(3)} = \frac{\gamma_2 \gamma_3}{(\gamma_1 - \gamma_3)(\gamma_1 - \gamma_2)}, \quad q_2^{(3)} = -\frac{\gamma_1 \gamma_3}{(\gamma_1 - \gamma_2)(\gamma_2 - \gamma_3)},
\]

\[
q_3^{(3)} = \frac{\gamma_1 \gamma_2}{(\gamma_2 - \gamma_3)(\gamma_1 - \gamma_3)}.
\]
Therefore, by Theorem 11, we get
\[
an_{1} = \left\{ \begin{array}{l}
n + 2 \\
2 \end{array} \right\} = \frac{\gamma_{1}^{n+2}}{(\gamma_{1} - \gamma_{3}) (\gamma_{1} - \gamma_{2})} + \frac{\gamma_{2}^{n+2}}{(\gamma_{2} - \gamma_{3}) (\gamma_{2} - \gamma_{1})} + \frac{\gamma_{3}^{n+2}}{(\gamma_{3} - \gamma_{2}) (\gamma_{3} - \gamma_{1})},
\]
\[
an_{2} = \left\{ \begin{array}{l}
n + 2 \\
1 \end{array} \right\} = \frac{\gamma_{2} \gamma_{3} \gamma_{1}^{n+2}}{(\gamma_{1} - \gamma_{3}) (\gamma_{1} - \gamma_{2})} + \frac{\gamma_{1} \gamma_{3} \gamma_{2}^{n+2}}{(\gamma_{2} - \gamma_{3}) (\gamma_{2} - \gamma_{1})} + \frac{\gamma_{1} \gamma_{2} \gamma_{3}^{n+2}}{(\gamma_{3} - \gamma_{2}) (\gamma_{3} - \gamma_{1})},
\]
and since \(\gamma_{1} \gamma_{2} \gamma_{3} = -1\),
\[
a_{n,3} = -\left\{ \begin{array}{l}
n + 1 \\
2 \end{array} \right\} = -\left(\frac{\gamma_{1}^{n+1}}{(\gamma_{1} - \gamma_{3}) (\gamma_{1} - \gamma_{2})} + \frac{\gamma_{2}^{n+1}}{(\gamma_{2} - \gamma_{3}) (\gamma_{2} - \gamma_{1})} + \frac{\gamma_{3}^{n+1}}{(\gamma_{3} - \gamma_{2}) (\gamma_{3} - \gamma_{1})} \right) = -a_{n-1,1}.
\]
Note that also by using the definition of \(a_{n,i}\) for \(k = 2\), the equality \(a_{n,3} = -a_{n-1,1}\) can be obtained.

5. On sums of the generalized Fibonomial coefficients

In this section, we consider the sum of the generalized Fibonomial coefficients. In order to compute this sum, we shall define a new generating matrix by extending \(G_{k}\) which is given in (1).

Define the \((k + 2) \times (k + 2)\) matrices \(T_{k}\) and \(W_{n,k}\) as follows:
\[
T_{k} = \begin{bmatrix} 1 & 0 & \ldots & 0 \\
1 & G_{k} & & \\
\vdots & & \ddots & \\
0 & & & \end{bmatrix}
\quad \text{and} \quad W_{n,k} = \begin{bmatrix} 1 & 0 & \ldots & 0 \\
S_{n} & & & \\
\vdots & H_{n,k} & & \\
S_{n-k} & & & \\
\end{bmatrix}
\]
where the matrices \(G_{k}\) and \(H_{n,k}\) are as before and also \(S_{n}\) is given by
\[
S_{n} = \sum_{i=0}^{n-1} a_{i,1} = \sum_{i=0}^{n-1} \left\{ \begin{array}{l}
k + i \\
k \end{array} \right\}.
\]
Then we have the following result.

Theorem 12. For \(n, k > 0\),
\[
T_{k}^{n} = W_{n,k}.
\]

Proof. Since \(S_{n+1} = a_{n,1} + S_{n}\) and by Theorem 2, we write the matrix recurrence relation \(W_{n,k} = W_{n-1,k}T_{k}\). By the induction method, we write \(W_{n,k} = W_{1,k}T_{k}^{n-1}\). From the definition of \(W_{n,k}\), we obtain \(W_{1,k} = T_{k}^{1}\) and so \(W_{n,k} = T_{k}^{n}\). Thus we have the conclusion. □

Here we should note that from Corollary 6, we know that the polynomial \(f_{1,k}\) has the root 1 for \(k \equiv 0 \pmod{4}\). Expanding the det \((\lambda I_{k+2} - T_{k})\) with respect to the first row, it is easily seen that the matrix \(T_{k}\) also has the eigenvalue 1. Thus we see that the matrix \(T_{k}\) has a double eigenvalue for \(k \equiv 0 \pmod{4}\). For \(k \not\equiv 0 \pmod{4}\), we can diagonalize the matrix \(T_{k}\) and so we derive an explicit formula for this sum.

Define the \((k + 2) \times (k + 2)\) matrix \(M\) as shown:
\[
M = \begin{bmatrix} 1 & 0 & \ldots & 0 \\
\delta & & & \\
\vdots & & \ddots & \\
\delta & & & V \end{bmatrix}
\]
where \(\delta = \left(1 - \sum_{i=1}^{k+1} a_{i,1} \right)^{-1}\) and the Vandermonde matrix \(V\) is defined as before.
We can check that $T_k M = MD_1$, where T_k is as before and D_1 is a diagonal matrix such that $D_1 = \text{diag}(1, \lambda_1, \lambda_2, \ldots, \lambda_{k+1})$. Considering the matrix V, we compute $\det M$ with respect to the first row and then we find $\det M = \det V$.

Then we give the following theorem.

Theorem 13. For $n, k > 0$ and $k \not\equiv 0 \pmod{4}$,

$$S_n = \frac{a_{n,1} + a_{n,2} + \cdots + a_{n,k+1} - 1}{\sum_{i=1}^{k+1} a_{1,i} - 1}.$$

Proof. Since the matrix M is invertible, we write $M^{-1}T_k M = D_1$. Thus the matrix T_k is similar to the matrix D_1. Then we write $T_k^2 M = MD_1^2$. By Theorem 12, $W_{n,k} M = MD_1^n$. Equating the $(2, 1)$ th elements of $W_{n,k} M = MD_1^n$ and from a matrix multiplication, we obtain

$$S_n + \delta (a_{n,1} + a_{n,2} + \cdots + a_{n,k+1}) = \delta.$$

Thus the proof is complete. □

As an application of Theorem 13, we give the following case without computations. When $k = 3$, we obtain that for $n \geq 0$

$$\sum_{i=0}^{n} \left\{ \frac{3 + i}{3} \right\} = u_2 u_3 (u_n u_{n+2} u_{n+4} + u_{n+1} u_{n+3} u_{n+5} - u_3) / v_3.$$

6. Generating functions

In this section, we give generating functions of the generalized Fibonomial coefficients.

We define k sequences $\{f^i_n\}$ of kth order linear recurrence relation, for $n > 0$ and $1 \leq i \leq k$, as

$$f^i_n = c_1 f^i_{n-1} + c_2 f^i_{n-2} + \cdots + c_k f^i_{n-k}$$

with initial conditions

$$f^i_n = \begin{cases} 1 & \text{if } i = 1 - n, \\ 0 & \text{otherwise,} \end{cases} \text{ for } 1 - k \leq n \leq 0$$

where c_j, $1 \leq j \leq k$, are constant coefficients, and f^i_n is the nth term of the ith sequence. Using the approach of Kalman in [14], Er showed in [6] that $M_n = A^n$

where the matrices A and Q_n are

$$A = \begin{bmatrix} c_1 & c_2 & \cdots & c_{k-1} & c_k \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}_{k \times k} \quad \text{and} \quad Q_n = \begin{bmatrix} f^1_n & f^2_n & \cdots & f^k_n \\ f^1_{n-1} & f^2_{n-1} & \cdots & f^k_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ f^1_{n-k+1} & f^2_{n-k+1} & \cdots & f^k_{n-k+1} \end{bmatrix}_{k \times k}.$$

By defining $G(i, x) = f^0_0 x^0 + f^1_1 x^1 + f^2_2 x^2 + \cdots + f^i_n x^n + \cdots$, we give the following theorem. For the reader’s convenience, we give the following result with proof.

Theorem 14. For $k > 0$ and $1 \leq i \leq k$,

$$G(i, x) = \frac{f^i_0 + \sum_{m=1}^{k} \sum_{v=m+1}^{k} c_v f^i_{m-v} x^m}{1 - c_1 x - c_2 x^2 - \cdots - c_k x^k}.$$
Corollary 15. For $1 \leq i \leq k + 1$,

$$g(i, x) = \frac{a_{0, i} - \sum_{m=1}^{k+1} \sum_{v=m+1}^{k+1} a_{1,v} a_{m-v, i} x^m}{1 - a_{1,1} x - a_{1,2} x^2 - \cdots - a_{1,k+1} x^{k+1}}$$

where $a_{n,1}$ is defined as before.

For example, when $i = 1$ in Corollary 15, we get

$$\sum_{n=0}^{\infty} \binom{n+k}{k} x^n = \frac{1}{1 - \left\{ \frac{k+1}{k} \right\} x - \left\{ \frac{k+1}{k-1} \right\} x^2 + \left\{ \frac{k+1}{k-2} \right\} x^3 + \cdots - (-1)^{k(k-1)/2} x^{k+1}}.$$

For $k = 3$ (i.e., $1, 2, 3$ subsequently) we obtain

$$\sum_{n=0}^{\infty} \binom{n+3}{3} x^n = \frac{1}{1 - \left\{ \frac{4}{3} \right\} x - \left\{ \frac{4}{2} \right\} x^2 + \left\{ \frac{4}{1} \right\} x^3 + x^4},$$

$$\sum_{n=0}^{\infty} \left\{ \binom{n}{1} \binom{n+3}{2} \right\} x^n = \frac{u_3 u_4 / u_2 x - v_1 v_2 x^2 - x^3}{1 - \left\{ \frac{4}{3} \right\} x - \left\{ \frac{4}{2} \right\} x^2 + \left\{ \frac{4}{1} \right\} x^3 + x^4}$$

and

$$\sum_{n=0}^{\infty} \left\{ \binom{n+1}{2} \binom{n+3}{1} \right\} x^n = \frac{v_1 v_2 x + x^2}{1 - \left\{ \frac{4}{3} \right\} x - \left\{ \frac{4}{2} \right\} x^2 + \left\{ \frac{4}{1} \right\} x^3 + x^4}.$$
For example, the following generating function for the triple product of consecutive Fibonacci numbers can be found in [16]:

\[
\sum_{n=0}^{\infty} F_n F_{n+1} F_{n+2} x^n = \frac{2x}{1 - 3x - 6x^2 + 3x^3 + x^4}.
\]

Indeed the above generating function can also be rewritten via the Fibonomial coefficients \(\binom{n}{k}_F \) as:

\[
\sum_{n=0}^{\infty} \binom{n+2}{3}_F x^n = \frac{x}{1 - 3x - 6x^2 + 3x^3 + x^4}.
\]

For the generating function of the powers of Fibonacci numbers, we can refer to [24, 11].

For \(k = 4 \), we get

\[
\sum_{n=0}^{\infty} \binom{n+4}{4}_F x^n = \frac{1}{1 - \left(\binom{5}{4} x - \binom{5}{3} x^2 + \binom{5}{2} x^3 + \binom{5}{1} x^4 - \binom{5}{5} x^5 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n}{1} \binom{n+4}{3}_F x^n = \frac{v_2 u_5 x - v_2 u_5 x^2 - u_5 x^3 + x^4}{1 - \left(\binom{5}{4} x - \binom{5}{3} x^2 + \binom{5}{2} x^3 + \binom{5}{1} x^4 - \binom{5}{5} x^5 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n+1}{2} \binom{n+4}{2}_F x^n = \frac{v_2 u_5 x + u_5 x^2 - x^3}{1 - \left(\binom{5}{4} x - \binom{5}{3} x^2 + \binom{5}{2} x^3 + \binom{5}{1} x^4 - \binom{5}{5} x^5 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n+2}{3} \binom{n+4}{1}_F x^n = \frac{u_5 x - x^2}{1 - \left(\binom{5}{4} x - \binom{5}{3} x^2 + \binom{5}{2} x^3 + \binom{5}{1} x^4 - \binom{5}{5} x^5 \right)}.
\]

For \(k = 5 \), we get

\[
\sum_{n=0}^{\infty} \binom{n+5}{5}_F x^n = \frac{1}{1 - \left(\binom{6}{5} x - \binom{6}{4} x^2 + \binom{6}{3} x^3 + \binom{6}{2} x^4 - \binom{6}{1} x^5 - \binom{6}{5} x^6 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n}{1} \binom{n+5}{4}_F x^n = \frac{(u_5 u_6 u_2) x - v_2 v_3 u_5 x^2 - (u_5 u_6 u_2) x^3 + u_6 x^4 + x^5}{1 - \left(\binom{6}{5} x - \binom{6}{4} x^2 + \binom{6}{3} x^3 + \binom{6}{2} x^4 - \binom{6}{1} x^5 - \binom{6}{5} x^6 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n+1}{2} \binom{n+5}{3}_F x^n = \frac{v_2 v_3 u_5 x + (u_5 u_6 u_2) x^2 - u_6 x^3 - x^4}{1 - \left(\binom{6}{5} x - \binom{6}{4} x^2 + \binom{6}{3} x^3 + \binom{6}{2} x^4 - \binom{6}{1} x^5 - \binom{6}{5} x^6 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n+2}{3} \binom{n+5}{2}_F x^n = \frac{(u_5 u_6 u_2) x - u_6 x^2 - x^3}{1 - \left(\binom{6}{5} x - \binom{6}{4} x^2 + \binom{6}{3} x^3 + \binom{6}{2} x^4 - \binom{6}{1} x^5 - \binom{6}{5} x^6 \right)}.
\]

\[
\sum_{n=0}^{\infty} \binom{n+3}{4} \binom{n+5}{1}_F x^n = \frac{(u_5 u_6 u_4) x + x^2}{1 - \left(\binom{6}{5} x - \binom{6}{4} x^2 + \binom{6}{3} x^3 + \binom{6}{2} x^4 - \binom{6}{1} x^5 - \binom{6}{5} x^6 \right)}.
\]

7. Combinatorial representations

In this section, we give combinatorial representations for the generalized Fibonomial coefficients. In [2], the authors considered the \(k \times k \) companion matrix \(A \) that we give in (4) and its \(n \)th power to derive an explicit formula for the elements in the \(n \)th power of the matrix \(A \). Let us recall this result, as follows.
Theorem 16 ([2]). Let the matrix \(A = (a_{ij}) \) be as in (4). The \((i, j)\) entry \(a_{ij}^{(n)} \) in the matrix \(A^n \) is given by the following formula:

\[
d_{ij}^{(n)}(c_1, c_2, \ldots, c_k) = \sum_{(t_1, t_2, \ldots, t_k)} \frac{t_j + t_{j+1} + \cdots + t_k}{t_1 + t_2 + \cdots + t_k} \times \left(\frac{t_1 + t_2 + \cdots + t_k}{t_1, t_2, \ldots, t_k} \right) c_1^{t_1} \cdots c_k^{t_k}
\]

(5)

where the summation is over nonnegative integers satisfying \(t_1 + 2t_2 + \cdots + kt_k = n - i + j \), and the coefficients are defined as 1 for \(n = i - j \).

Thus we give the following results.

Corollary 17. Let \(a_{n,i} \) denote the generalized Fibonomial coefficients. Then

\[
a_{n-i+1, j} = \sum_{(t_1, t_2, \ldots, t_k+1)} \frac{t_j + t_{j+1} + \cdots + t_{k+1}}{t_1 + t_2 + \cdots + t_{k+1}} \times \left(\frac{t_1 + t_2 + \cdots + t_{k+1}}{t_1, t_2, \ldots, t_{k+1}} \right) a_{1,1}^{t_1} \cdots a_{1,k+1}^{t_{k+1}}
\]

where the summation is over nonnegative integers satisfying \(t_1 + 2t_2 + \cdots + (k+1)t_{k+1} = n - i + j \).

Proof. Considering the matrices \(G_k \) and \(A \), the proof is obvious from the result of Theorem 16. \(\square \)

Corollary 18. For \(n \geq 0 \),

\[
\binom{n+k}{k} = \sum_{(t_1, t_2, \ldots, t_{k+1})} \left(\frac{t_1 + t_2 + \cdots + t_{k+1}}{t_1, t_2, \ldots, t_{k+1}} \right) a_{1,1}^{t_1} \cdots a_{1,k+1}^{t_{k+1}}
\]

where the summation is over nonnegative integers satisfying \(t_1 + 2t_2 + \cdots + (k+1)t_{k+1} = n \).

Proof. In Corollary 17, if we take \(i = j = 1 \), then \(a_{n,1} = \left\{ \binom{n+k}{k} \right\} \), so the proof of Corollary 17 follows. \(\square \)

For example, one can obtain

\[
\binom{n}{1} \binom{n+3}{2} = \sum_{(r_1, r_2, r_3, r_4)} \frac{r_2 + r_3 + r_4}{r_1 + r_2 + r_3 + r_4} \left(\frac{r_1 + r_2 + r_3 + r_4}{r_1, r_2, r_3, r_4} \right) (-1)^{r_3+r_4} \binom{4}{3} \binom{4}{2} \]

where the summation is over nonnegative integers satisfying \(r_1 + 2r_2 + 3r_3 + 4r_4 = n + 1 \) and

\[
\binom{n+1}{2} \binom{n+3}{1} = \sum_{(r_1, r_2, r_3, r_4)} \frac{r_3 + r_4}{r_1 + r_2 + r_3 + r_4} \times \left(\frac{r_1 + r_2 + r_3 + r_4}{r_1, r_2, r_3, r_4} \right) (-1)^{r_3+r_4+1} \binom{4}{3} \binom{4}{2}
\]

where the summation is over nonnegative integers satisfying \(r_1 + 2r_2 + 3r_3 + 4r_4 = n + 2 \).

8. Determinantal representations

In this section, we determine some relationships between determinants of certain matrices and the generalized Fibonomial coefficients. Similar relationships have been derived by some authors (see for more detail [17,18,22]). In particular, Lind [17] gave the first result for the relationship between the determinant of certain Hessenberg matrices and the generalized Fibonomial coefficients. For convenience, we give the result of Lind [17].

Let \(D_{n,k} \) denote the recurrent \(n \times n \) determinant \(|a_{rs}| \), where

\[
a_{rs} = -(-1)^{(s+r+1)(s-r+2)/2} \sum_{s-r+1}^{k+1} \binom{k+1}{s-r+1} F
\]

for \(r, s = 1, 2, \ldots, n \).
Then the author showed that

\[D_{n,k} = \binom{n+k}{k} \]

where \(\binom{n}{k}_F \) is the Fibonomial coefficient. The analogous result holds when the Fibonacci sequence is replaced by an ordinary second-order recurring sequence.

Now, by constructing superdiagonal matrices, we give some new results that are given by Lind in [17].

Definition 19. For \(n > k > 0 \), let \(M_n = \begin{bmatrix} m_{ij} \end{bmatrix} \) denote the \(k \)-superdiagonal matrix of order \(n \) with \(m_{ii} = a_{i,1} \) for \(1 \leq i \leq n \), \(m_{i,i+1} = a_{1,2} \) for \(1 \leq i \leq n-1 \), \(\ldots \), \(m_{i,i+k} = a_{1,k+1} \) for \(1 \leq i \leq n-k \).

Clearly the matrix \(M_n \) is in the form

\[
M_n = \begin{bmatrix}
-a_{1,1} & a_{1,2} & \cdots & a_{1,k+1} & 0 \\
-1 & a_{1,1} & a_{1,2} & \cdots & a_{1,k+1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & a_{1,1} & a_{1,2} \\
0 & \cdots & \cdots & -1 & a_{1,2} \\
\end{bmatrix}_{n \times n}
\]

(6)

Theorem 20. For \(n > 0 \),

\[|M_n| = a_{n,1}. \]

Proof (Induction on \(n \)). If \(n = 2 \), then we have

\[|M_2| = \begin{vmatrix} a_{1,1} & a_{1,2} \\ -1 & a_{1,1} \end{vmatrix} = a_{1,1}a_{1,1} + a_{1,2} = a_{2,1}. \]

Suppose this equation holds for \(n \). Then we show that the equality is true for \(n + 1 \). Expanding \(|M_{n+1}| \) by the Laplace expansion of determinant according to the last column and by the definition of \(M_n \), we get

\[|M_{n+1}| = a_{1,1} |M_n| + a_{1,2} |M_{n-1}| + a_{1,3} |M_{n-2}| + \cdots + a_{1,k+1} |M_{n-k}|. \]

By our assumption and the recurrence relation of \(\{ a_{n,1} \} \), we write

\[|M_{n+1}| = a_{1,1}a_{n,1} + a_{1,2}a_{n-1,1} + a_{1,3}a_{n-2,1} + \cdots + a_{1,k+1}a_{n-k,1} = a_{n+1,1}. \]

Thus the theorem is proven. □

For example, if we take \(p = 1 \), then \(u_n = F_n \) (\(n \)th Fibonacci number) and by **Theorem 20**, we have

\[
\begin{bmatrix} 3 & 6 & -3 & -1 & 0 \\ -1 & 3 & 6 & -3 & \cdots \\ -1 & 3 & 6 & \ddots & -1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -1 & 3 & 6 \end{bmatrix}_{n \times n} = \begin{bmatrix} n+3 \\ 3 \end{bmatrix}_F.
\]

Let \(M_n(k) \) denote the matrix obtained by the matrix \(M_n = \begin{bmatrix} m_{ij} \end{bmatrix} \) taking \(m_{1,j} = 0 \) for \(1 \leq j \leq k \). For example

\[
M_4(2) = \begin{bmatrix} 0 & 0 & a_{1,3} & a_{1,4} \\ -1 & a_{1,1} & a_{1,2} & a_{1,3} \\ 0 & -1 & a_{1,1} & a_{1,2} \\ 0 & 0 & -1 & a_{1,1} \end{bmatrix}.
\]
Now we determine some relationships between the sequences \(\{a_{n,i}\} \) for \(1 < i \leq k \) and the consecutive determinants of matrix \(M_n(k) \) for some specific number \(k \).

Theorem 21. For \(n > k \geq i \geq 1 \),
\[
|M_n(i)| = a_{n-i,i+1}.
\]

Proof. Expanding \(|M_n(i)| \) with respect to the first row and using the definitions of \(M_n(i) \) and \(M_n \), we get
\[
|M_n(i)| = a_{1,i+1} |M_{n-i-1}| + a_{1,i+2} |M_{n-i-2}| + \cdots + a_{1,k+1} |M_{n-k-1}|
\]
Similarly expanding the \(|M_n| \) with respect to the first row and using the definitions of \(M_n \) and \(|M_n(i)| \), we may write, after some simplifications,
\[
|M_n(i)| = |M_n| - a_{1,1} |M_{n-1}| - a_{1,2} |M_{n-2}| - a_{1,3} |M_{n-3}| - \cdots - a_{1,i} |M_{n-i}|
\]
which, by our assumption and Lemma 1, satisfies
\[
|M_n(i)| = a_{n-1,1} - a_{1,1} a_{n-2,1} - a_{1,2} a_{n-3,1} - \cdots - a_{1,i} a_{n-i,1}
\]
\[
= a_{n-1,2} - a_{1,2} a_{n-2,1} - a_{1,3} a_{n-3,1} - \cdots - a_{1,i} a_{n-i,1}
\]
\[\vdots\]
\[
= a_{n-i+1,i} - a_{1,i} a_{n-i,1}
\]
\[
= a_{n-i,i+1}.
\]
Thus the proof is complete.

We now define an \(n \times n \) upper Hessenberg matrix \(D_n \) as in the following compact form:
\[
D_n = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
-1 & 0 & \cdots & M_{n-1} \\
0 & M_{n-1} & \cdots & 0 \\
0 & \cdots & 0 & -1 & 1
\end{bmatrix}
\]
where \(M_n \) is defined as before. □

Theorem 22. For \(n > 1 \),
\[
|D_n| = S_n
\]
where \(S_n \) is defined as before.

Proof. By Theorem 20, the proof follows from by induction. □

To derive other similar relationships between determinants of certain matrices and the sums of the other products, we define \((n+1) \times (n+1) \) matrix \(T_{n,i} \) for \(1 \leq i \leq k \) as follows:
\[
T_{n,i} = \begin{bmatrix}
1 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & M_n(i) & 0 \\
0 & \cdots & 0 & -1 & 1
\end{bmatrix}
\]
\text{ith row}
where the matrix \(M_n(i) \) is defined as before.
Expanding $|T_{n,i}|$ according to the last row, we have the following Theorem.

Theorem 23. For $n \geq k \geq i \geq 1$,

$$|T_{n,i}| = \sum_{i=0}^{n-i-1} a_{i,1}.$$

9. Conclusion

In this paper, we consider the recurrence $\{u_n\}$ and its generalized Fibonomial coefficients. Using results in this paper, one can obtain many applications to the recurrence $\{u_n\}$ or its special cases, that is, Fibonacci or Pell sequences. Moreover, one can obtain many analogues for the recurrence $\{U_n\}$ defined by $U_n = pU_{n-1} - qU_{n-2}$ with $U_0 = 0$ and $U_1 = 1$. However one should be aware that, in case of recurrence $\{U_n\}$, we cannot obtain a generator matrix by using just the matrix itself.

Acknowledgments

We express our appreciations to the two anonymous referees for reading this paper carefully and providing us with their valuable corrections.

References

[10] V. Hoggatt Jr., M. Bicknell, Fourth power Fibonacci identities from Pascal’s triangle, Fibonacci Quart. 2 (1964) 81–89.